Metamath Proof Explorer


Theorem lcfrlem16

Description: Lemma for lcfr . (Contributed by NM, 8-Mar-2015)

Ref Expression
Hypotheses lcf1o.h H=LHypK
lcf1o.o ˙=ocHKW
lcf1o.u U=DVecHKW
lcf1o.v V=BaseU
lcf1o.a +˙=+U
lcf1o.t ·˙=U
lcf1o.s S=ScalarU
lcf1o.r R=BaseS
lcf1o.z 0˙=0U
lcf1o.f F=LFnlU
lcf1o.l L=LKerU
lcf1o.d D=LDualU
lcf1o.q Q=0D
lcf1o.c C=fF|˙˙Lf=Lf
lcf1o.j J=xV0˙vVιkR|w˙xv=w+˙k·˙x
lcflo.k φKHLWH
lcfrlem16.p P=LSubSpD
lcfrlem16.g φGP
lcfrlem16.gs φGC
lcfrlem16.m E=gG˙Lg
lcfrlem16.x φXE0˙
Assertion lcfrlem16 φJXG

Proof

Step Hyp Ref Expression
1 lcf1o.h H=LHypK
2 lcf1o.o ˙=ocHKW
3 lcf1o.u U=DVecHKW
4 lcf1o.v V=BaseU
5 lcf1o.a +˙=+U
6 lcf1o.t ·˙=U
7 lcf1o.s S=ScalarU
8 lcf1o.r R=BaseS
9 lcf1o.z 0˙=0U
10 lcf1o.f F=LFnlU
11 lcf1o.l L=LKerU
12 lcf1o.d D=LDualU
13 lcf1o.q Q=0D
14 lcf1o.c C=fF|˙˙Lf=Lf
15 lcf1o.j J=xV0˙vVιkR|w˙xv=w+˙k·˙x
16 lcflo.k φKHLWH
17 lcfrlem16.p P=LSubSpD
18 lcfrlem16.g φGP
19 lcfrlem16.gs φGC
20 lcfrlem16.m E=gG˙Lg
21 lcfrlem16.x φXE0˙
22 21 eldifad φXE
23 22 20 eleqtrdi φXgG˙Lg
24 eliun XgG˙LggGX˙Lg
25 23 24 sylib φgGX˙Lg
26 eqid D=D
27 1 3 16 dvhlvec φULVec
28 27 3ad2ant1 φgGX˙LgULVec
29 eqid BaseD=BaseD
30 29 17 lssel GPgGgBaseD
31 18 30 sylan φgGgBaseD
32 1 3 16 dvhlmod φULMod
33 10 12 29 32 ldualvbase φBaseD=F
34 33 adantr φgGBaseD=F
35 31 34 eleqtrd φgGgF
36 35 3adant3 φgGX˙LggF
37 16 adantr φgGKHLWH
38 32 adantr φgGULMod
39 4 10 11 38 35 lkrssv φgGLgV
40 1 3 4 2 dochssv KHLWHLgV˙LgV
41 37 39 40 syl2anc φgG˙LgV
42 41 ralrimiva φgG˙LgV
43 iunss gG˙LgVgG˙LgV
44 42 43 sylibr φgG˙LgV
45 20 44 eqsstrid φEV
46 45 ssdifd φE0˙V0˙
47 46 21 sseldd φXV0˙
48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 47 lcfrlem10 φJXF
49 48 3ad2ant1 φgGX˙LgJXF
50 eqid LSAtomsU=LSAtomsU
51 16 3ad2ant1 φgGX˙LgKHLWH
52 simp3 φgGX˙LgX˙Lg
53 eldifsni XE0˙X0˙
54 21 53 syl φX0˙
55 54 3ad2ant1 φgGX˙LgX0˙
56 eldifsn X˙Lg0˙X˙LgX0˙
57 52 55 56 sylanbrc φgGX˙LgX˙Lg0˙
58 1 2 3 4 9 10 11 51 36 57 50 dochsnkrlem2 φgGX˙Lg˙LgLSAtomsU
59 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 47 lcfrlem15 φX˙LJX
60 eldifsn X˙LJX0˙X˙LJXX0˙
61 59 54 60 sylanbrc φX˙LJX0˙
62 1 2 3 4 9 10 11 16 48 61 50 dochsnkrlem2 φ˙LJXLSAtomsU
63 62 3ad2ant1 φgGX˙Lg˙LJXLSAtomsU
64 59 3ad2ant1 φgGX˙LgX˙LJX
65 9 50 28 58 63 55 52 64 lsat2el φgGX˙Lg˙Lg=˙LJX
66 eqid DIsoHKW=DIsoHKW
67 19 3ad2ant1 φgGX˙LgGC
68 simp2 φgGX˙LggG
69 67 68 sseldd φgGX˙LggC
70 1 66 2 3 10 11 14 51 36 lcfl5 φgGX˙LggCLgranDIsoHKW
71 69 70 mpbid φgGX˙LgLgranDIsoHKW
72 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 47 lcfrlem13 φJXCQ
73 72 eldifad φJXC
74 1 66 2 3 10 11 14 16 48 lcfl5 φJXCLJXranDIsoHKW
75 73 74 mpbid φLJXranDIsoHKW
76 75 3ad2ant1 φgGX˙LgLJXranDIsoHKW
77 1 66 2 51 71 76 doch11 φgGX˙Lg˙Lg=˙LJXLg=LJX
78 65 77 mpbid φgGX˙LgLg=LJX
79 7 8 10 11 12 26 28 36 49 78 eqlkr4 φgGX˙LgkRJX=kDg
80 32 3ad2ant1 φgGX˙LgULMod
81 80 adantr φgGX˙LgkRULMod
82 18 3ad2ant1 φgGX˙LgGP
83 82 adantr φgGX˙LgkRGP
84 simpr φgGX˙LgkRkR
85 simpl2 φgGX˙LgkRgG
86 7 8 12 26 17 81 83 84 85 ldualssvscl φgGX˙LgkRkDgG
87 eleq1 JX=kDgJXGkDgG
88 86 87 syl5ibrcom φgGX˙LgkRJX=kDgJXG
89 88 rexlimdva φgGX˙LgkRJX=kDgJXG
90 79 89 mpd φgGX˙LgJXG
91 90 rexlimdv3a φgGX˙LgJXG
92 25 91 mpd φJXG