Step |
Hyp |
Ref |
Expression |
1 |
|
lcf1o.h |
|
2 |
|
lcf1o.o |
|
3 |
|
lcf1o.u |
|
4 |
|
lcf1o.v |
|
5 |
|
lcf1o.a |
|
6 |
|
lcf1o.t |
|
7 |
|
lcf1o.s |
|
8 |
|
lcf1o.r |
|
9 |
|
lcf1o.z |
|
10 |
|
lcf1o.f |
|
11 |
|
lcf1o.l |
|
12 |
|
lcf1o.d |
|
13 |
|
lcf1o.q |
|
14 |
|
lcf1o.c |
|
15 |
|
lcf1o.j |
|
16 |
|
lcflo.k |
|
17 |
|
lcfrlem16.p |
|
18 |
|
lcfrlem16.g |
|
19 |
|
lcfrlem16.gs |
|
20 |
|
lcfrlem16.m |
|
21 |
|
lcfrlem16.x |
|
22 |
21
|
eldifad |
|
23 |
22 20
|
eleqtrdi |
|
24 |
|
eliun |
|
25 |
23 24
|
sylib |
|
26 |
|
eqid |
|
27 |
1 3 16
|
dvhlvec |
|
28 |
27
|
3ad2ant1 |
|
29 |
|
eqid |
|
30 |
29 17
|
lssel |
|
31 |
18 30
|
sylan |
|
32 |
1 3 16
|
dvhlmod |
|
33 |
10 12 29 32
|
ldualvbase |
|
34 |
33
|
adantr |
|
35 |
31 34
|
eleqtrd |
|
36 |
35
|
3adant3 |
|
37 |
16
|
adantr |
|
38 |
32
|
adantr |
|
39 |
4 10 11 38 35
|
lkrssv |
|
40 |
1 3 4 2
|
dochssv |
|
41 |
37 39 40
|
syl2anc |
|
42 |
41
|
ralrimiva |
|
43 |
|
iunss |
|
44 |
42 43
|
sylibr |
|
45 |
20 44
|
eqsstrid |
|
46 |
45
|
ssdifd |
|
47 |
46 21
|
sseldd |
|
48 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 47
|
lcfrlem10 |
|
49 |
48
|
3ad2ant1 |
|
50 |
|
eqid |
|
51 |
16
|
3ad2ant1 |
|
52 |
|
simp3 |
|
53 |
|
eldifsni |
|
54 |
21 53
|
syl |
|
55 |
54
|
3ad2ant1 |
|
56 |
|
eldifsn |
|
57 |
52 55 56
|
sylanbrc |
|
58 |
1 2 3 4 9 10 11 51 36 57 50
|
dochsnkrlem2 |
|
59 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 47
|
lcfrlem15 |
|
60 |
|
eldifsn |
|
61 |
59 54 60
|
sylanbrc |
|
62 |
1 2 3 4 9 10 11 16 48 61 50
|
dochsnkrlem2 |
|
63 |
62
|
3ad2ant1 |
|
64 |
59
|
3ad2ant1 |
|
65 |
9 50 28 58 63 55 52 64
|
lsat2el |
|
66 |
|
eqid |
|
67 |
19
|
3ad2ant1 |
|
68 |
|
simp2 |
|
69 |
67 68
|
sseldd |
|
70 |
1 66 2 3 10 11 14 51 36
|
lcfl5 |
|
71 |
69 70
|
mpbid |
|
72 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 47
|
lcfrlem13 |
|
73 |
72
|
eldifad |
|
74 |
1 66 2 3 10 11 14 16 48
|
lcfl5 |
|
75 |
73 74
|
mpbid |
|
76 |
75
|
3ad2ant1 |
|
77 |
1 66 2 51 71 76
|
doch11 |
|
78 |
65 77
|
mpbid |
|
79 |
7 8 10 11 12 26 28 36 49 78
|
eqlkr4 |
|
80 |
32
|
3ad2ant1 |
|
81 |
80
|
adantr |
|
82 |
18
|
3ad2ant1 |
|
83 |
82
|
adantr |
|
84 |
|
simpr |
|
85 |
|
simpl2 |
|
86 |
7 8 12 26 17 81 83 84 85
|
ldualssvscl |
|
87 |
|
eleq1 |
|
88 |
86 87
|
syl5ibrcom |
|
89 |
88
|
rexlimdva |
|
90 |
79 89
|
mpd |
|
91 |
90
|
rexlimdv3a |
|
92 |
25 91
|
mpd |
|