Metamath Proof Explorer


Theorem lsat2el

Description: Two atoms sharing a nonzero vector are equal. (Contributed by NM, 8-Mar-2015)

Ref Expression
Hypotheses lsat2el.o 0˙=0W
lsat2el.a A=LSAtomsW
lsat2el.w φWLVec
lsat2el.p φPA
lsat2el.q φQA
lsat2el.x φX0˙
lsat2el.x1 φXP
lsat2el.x2 φXQ
Assertion lsat2el φP=Q

Proof

Step Hyp Ref Expression
1 lsat2el.o 0˙=0W
2 lsat2el.a A=LSAtomsW
3 lsat2el.w φWLVec
4 lsat2el.p φPA
5 lsat2el.q φQA
6 lsat2el.x φX0˙
7 lsat2el.x1 φXP
8 lsat2el.x2 φXQ
9 eqid LSpanW=LSpanW
10 1 9 2 3 4 7 6 lsatel φP=LSpanWX
11 1 9 2 3 5 8 6 lsatel φQ=LSpanWX
12 10 11 eqtr4d φP=Q