Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Atoms, hyperplanes, and covering in a left vector space (or module)
lsat2el
Next ⟩
lsmsat
Metamath Proof Explorer
Ascii
Unicode
Theorem
lsat2el
Description:
Two atoms sharing a nonzero vector are equal.
(Contributed by
NM
, 8-Mar-2015)
Ref
Expression
Hypotheses
lsat2el.o
⊢
0
˙
=
0
W
lsat2el.a
⊢
A
=
LSAtoms
⁡
W
lsat2el.w
⊢
φ
→
W
∈
LVec
lsat2el.p
⊢
φ
→
P
∈
A
lsat2el.q
⊢
φ
→
Q
∈
A
lsat2el.x
⊢
φ
→
X
≠
0
˙
lsat2el.x1
⊢
φ
→
X
∈
P
lsat2el.x2
⊢
φ
→
X
∈
Q
Assertion
lsat2el
⊢
φ
→
P
=
Q
Proof
Step
Hyp
Ref
Expression
1
lsat2el.o
⊢
0
˙
=
0
W
2
lsat2el.a
⊢
A
=
LSAtoms
⁡
W
3
lsat2el.w
⊢
φ
→
W
∈
LVec
4
lsat2el.p
⊢
φ
→
P
∈
A
5
lsat2el.q
⊢
φ
→
Q
∈
A
6
lsat2el.x
⊢
φ
→
X
≠
0
˙
7
lsat2el.x1
⊢
φ
→
X
∈
P
8
lsat2el.x2
⊢
φ
→
X
∈
Q
9
eqid
⊢
LSpan
⁡
W
=
LSpan
⁡
W
10
1
9
2
3
4
7
6
lsatel
⊢
φ
→
P
=
LSpan
⁡
W
⁡
X
11
1
9
2
3
5
8
6
lsatel
⊢
φ
→
Q
=
LSpan
⁡
W
⁡
X
12
10
11
eqtr4d
⊢
φ
→
P
=
Q