| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcf1o.h |
|- H = ( LHyp ` K ) |
| 2 |
|
lcf1o.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
| 3 |
|
lcf1o.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 4 |
|
lcf1o.v |
|- V = ( Base ` U ) |
| 5 |
|
lcf1o.a |
|- .+ = ( +g ` U ) |
| 6 |
|
lcf1o.t |
|- .x. = ( .s ` U ) |
| 7 |
|
lcf1o.s |
|- S = ( Scalar ` U ) |
| 8 |
|
lcf1o.r |
|- R = ( Base ` S ) |
| 9 |
|
lcf1o.z |
|- .0. = ( 0g ` U ) |
| 10 |
|
lcf1o.f |
|- F = ( LFnl ` U ) |
| 11 |
|
lcf1o.l |
|- L = ( LKer ` U ) |
| 12 |
|
lcf1o.d |
|- D = ( LDual ` U ) |
| 13 |
|
lcf1o.q |
|- Q = ( 0g ` D ) |
| 14 |
|
lcf1o.c |
|- C = { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } |
| 15 |
|
lcf1o.j |
|- J = ( x e. ( V \ { .0. } ) |-> ( v e. V |-> ( iota_ k e. R E. w e. ( ._|_ ` { x } ) v = ( w .+ ( k .x. x ) ) ) ) ) |
| 16 |
|
lcflo.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 17 |
|
lcfrlem16.p |
|- P = ( LSubSp ` D ) |
| 18 |
|
lcfrlem16.g |
|- ( ph -> G e. P ) |
| 19 |
|
lcfrlem16.gs |
|- ( ph -> G C_ C ) |
| 20 |
|
lcfrlem16.m |
|- E = U_ g e. G ( ._|_ ` ( L ` g ) ) |
| 21 |
|
lcfrlem16.x |
|- ( ph -> X e. ( E \ { .0. } ) ) |
| 22 |
21
|
eldifad |
|- ( ph -> X e. E ) |
| 23 |
22 20
|
eleqtrdi |
|- ( ph -> X e. U_ g e. G ( ._|_ ` ( L ` g ) ) ) |
| 24 |
|
eliun |
|- ( X e. U_ g e. G ( ._|_ ` ( L ` g ) ) <-> E. g e. G X e. ( ._|_ ` ( L ` g ) ) ) |
| 25 |
23 24
|
sylib |
|- ( ph -> E. g e. G X e. ( ._|_ ` ( L ` g ) ) ) |
| 26 |
|
eqid |
|- ( .s ` D ) = ( .s ` D ) |
| 27 |
1 3 16
|
dvhlvec |
|- ( ph -> U e. LVec ) |
| 28 |
27
|
3ad2ant1 |
|- ( ( ph /\ g e. G /\ X e. ( ._|_ ` ( L ` g ) ) ) -> U e. LVec ) |
| 29 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
| 30 |
29 17
|
lssel |
|- ( ( G e. P /\ g e. G ) -> g e. ( Base ` D ) ) |
| 31 |
18 30
|
sylan |
|- ( ( ph /\ g e. G ) -> g e. ( Base ` D ) ) |
| 32 |
1 3 16
|
dvhlmod |
|- ( ph -> U e. LMod ) |
| 33 |
10 12 29 32
|
ldualvbase |
|- ( ph -> ( Base ` D ) = F ) |
| 34 |
33
|
adantr |
|- ( ( ph /\ g e. G ) -> ( Base ` D ) = F ) |
| 35 |
31 34
|
eleqtrd |
|- ( ( ph /\ g e. G ) -> g e. F ) |
| 36 |
35
|
3adant3 |
|- ( ( ph /\ g e. G /\ X e. ( ._|_ ` ( L ` g ) ) ) -> g e. F ) |
| 37 |
16
|
adantr |
|- ( ( ph /\ g e. G ) -> ( K e. HL /\ W e. H ) ) |
| 38 |
32
|
adantr |
|- ( ( ph /\ g e. G ) -> U e. LMod ) |
| 39 |
4 10 11 38 35
|
lkrssv |
|- ( ( ph /\ g e. G ) -> ( L ` g ) C_ V ) |
| 40 |
1 3 4 2
|
dochssv |
|- ( ( ( K e. HL /\ W e. H ) /\ ( L ` g ) C_ V ) -> ( ._|_ ` ( L ` g ) ) C_ V ) |
| 41 |
37 39 40
|
syl2anc |
|- ( ( ph /\ g e. G ) -> ( ._|_ ` ( L ` g ) ) C_ V ) |
| 42 |
41
|
ralrimiva |
|- ( ph -> A. g e. G ( ._|_ ` ( L ` g ) ) C_ V ) |
| 43 |
|
iunss |
|- ( U_ g e. G ( ._|_ ` ( L ` g ) ) C_ V <-> A. g e. G ( ._|_ ` ( L ` g ) ) C_ V ) |
| 44 |
42 43
|
sylibr |
|- ( ph -> U_ g e. G ( ._|_ ` ( L ` g ) ) C_ V ) |
| 45 |
20 44
|
eqsstrid |
|- ( ph -> E C_ V ) |
| 46 |
45
|
ssdifd |
|- ( ph -> ( E \ { .0. } ) C_ ( V \ { .0. } ) ) |
| 47 |
46 21
|
sseldd |
|- ( ph -> X e. ( V \ { .0. } ) ) |
| 48 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 47
|
lcfrlem10 |
|- ( ph -> ( J ` X ) e. F ) |
| 49 |
48
|
3ad2ant1 |
|- ( ( ph /\ g e. G /\ X e. ( ._|_ ` ( L ` g ) ) ) -> ( J ` X ) e. F ) |
| 50 |
|
eqid |
|- ( LSAtoms ` U ) = ( LSAtoms ` U ) |
| 51 |
16
|
3ad2ant1 |
|- ( ( ph /\ g e. G /\ X e. ( ._|_ ` ( L ` g ) ) ) -> ( K e. HL /\ W e. H ) ) |
| 52 |
|
simp3 |
|- ( ( ph /\ g e. G /\ X e. ( ._|_ ` ( L ` g ) ) ) -> X e. ( ._|_ ` ( L ` g ) ) ) |
| 53 |
|
eldifsni |
|- ( X e. ( E \ { .0. } ) -> X =/= .0. ) |
| 54 |
21 53
|
syl |
|- ( ph -> X =/= .0. ) |
| 55 |
54
|
3ad2ant1 |
|- ( ( ph /\ g e. G /\ X e. ( ._|_ ` ( L ` g ) ) ) -> X =/= .0. ) |
| 56 |
|
eldifsn |
|- ( X e. ( ( ._|_ ` ( L ` g ) ) \ { .0. } ) <-> ( X e. ( ._|_ ` ( L ` g ) ) /\ X =/= .0. ) ) |
| 57 |
52 55 56
|
sylanbrc |
|- ( ( ph /\ g e. G /\ X e. ( ._|_ ` ( L ` g ) ) ) -> X e. ( ( ._|_ ` ( L ` g ) ) \ { .0. } ) ) |
| 58 |
1 2 3 4 9 10 11 51 36 57 50
|
dochsnkrlem2 |
|- ( ( ph /\ g e. G /\ X e. ( ._|_ ` ( L ` g ) ) ) -> ( ._|_ ` ( L ` g ) ) e. ( LSAtoms ` U ) ) |
| 59 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 47
|
lcfrlem15 |
|- ( ph -> X e. ( ._|_ ` ( L ` ( J ` X ) ) ) ) |
| 60 |
|
eldifsn |
|- ( X e. ( ( ._|_ ` ( L ` ( J ` X ) ) ) \ { .0. } ) <-> ( X e. ( ._|_ ` ( L ` ( J ` X ) ) ) /\ X =/= .0. ) ) |
| 61 |
59 54 60
|
sylanbrc |
|- ( ph -> X e. ( ( ._|_ ` ( L ` ( J ` X ) ) ) \ { .0. } ) ) |
| 62 |
1 2 3 4 9 10 11 16 48 61 50
|
dochsnkrlem2 |
|- ( ph -> ( ._|_ ` ( L ` ( J ` X ) ) ) e. ( LSAtoms ` U ) ) |
| 63 |
62
|
3ad2ant1 |
|- ( ( ph /\ g e. G /\ X e. ( ._|_ ` ( L ` g ) ) ) -> ( ._|_ ` ( L ` ( J ` X ) ) ) e. ( LSAtoms ` U ) ) |
| 64 |
59
|
3ad2ant1 |
|- ( ( ph /\ g e. G /\ X e. ( ._|_ ` ( L ` g ) ) ) -> X e. ( ._|_ ` ( L ` ( J ` X ) ) ) ) |
| 65 |
9 50 28 58 63 55 52 64
|
lsat2el |
|- ( ( ph /\ g e. G /\ X e. ( ._|_ ` ( L ` g ) ) ) -> ( ._|_ ` ( L ` g ) ) = ( ._|_ ` ( L ` ( J ` X ) ) ) ) |
| 66 |
|
eqid |
|- ( ( DIsoH ` K ) ` W ) = ( ( DIsoH ` K ) ` W ) |
| 67 |
19
|
3ad2ant1 |
|- ( ( ph /\ g e. G /\ X e. ( ._|_ ` ( L ` g ) ) ) -> G C_ C ) |
| 68 |
|
simp2 |
|- ( ( ph /\ g e. G /\ X e. ( ._|_ ` ( L ` g ) ) ) -> g e. G ) |
| 69 |
67 68
|
sseldd |
|- ( ( ph /\ g e. G /\ X e. ( ._|_ ` ( L ` g ) ) ) -> g e. C ) |
| 70 |
1 66 2 3 10 11 14 51 36
|
lcfl5 |
|- ( ( ph /\ g e. G /\ X e. ( ._|_ ` ( L ` g ) ) ) -> ( g e. C <-> ( L ` g ) e. ran ( ( DIsoH ` K ) ` W ) ) ) |
| 71 |
69 70
|
mpbid |
|- ( ( ph /\ g e. G /\ X e. ( ._|_ ` ( L ` g ) ) ) -> ( L ` g ) e. ran ( ( DIsoH ` K ) ` W ) ) |
| 72 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 47
|
lcfrlem13 |
|- ( ph -> ( J ` X ) e. ( C \ { Q } ) ) |
| 73 |
72
|
eldifad |
|- ( ph -> ( J ` X ) e. C ) |
| 74 |
1 66 2 3 10 11 14 16 48
|
lcfl5 |
|- ( ph -> ( ( J ` X ) e. C <-> ( L ` ( J ` X ) ) e. ran ( ( DIsoH ` K ) ` W ) ) ) |
| 75 |
73 74
|
mpbid |
|- ( ph -> ( L ` ( J ` X ) ) e. ran ( ( DIsoH ` K ) ` W ) ) |
| 76 |
75
|
3ad2ant1 |
|- ( ( ph /\ g e. G /\ X e. ( ._|_ ` ( L ` g ) ) ) -> ( L ` ( J ` X ) ) e. ran ( ( DIsoH ` K ) ` W ) ) |
| 77 |
1 66 2 51 71 76
|
doch11 |
|- ( ( ph /\ g e. G /\ X e. ( ._|_ ` ( L ` g ) ) ) -> ( ( ._|_ ` ( L ` g ) ) = ( ._|_ ` ( L ` ( J ` X ) ) ) <-> ( L ` g ) = ( L ` ( J ` X ) ) ) ) |
| 78 |
65 77
|
mpbid |
|- ( ( ph /\ g e. G /\ X e. ( ._|_ ` ( L ` g ) ) ) -> ( L ` g ) = ( L ` ( J ` X ) ) ) |
| 79 |
7 8 10 11 12 26 28 36 49 78
|
eqlkr4 |
|- ( ( ph /\ g e. G /\ X e. ( ._|_ ` ( L ` g ) ) ) -> E. k e. R ( J ` X ) = ( k ( .s ` D ) g ) ) |
| 80 |
32
|
3ad2ant1 |
|- ( ( ph /\ g e. G /\ X e. ( ._|_ ` ( L ` g ) ) ) -> U e. LMod ) |
| 81 |
80
|
adantr |
|- ( ( ( ph /\ g e. G /\ X e. ( ._|_ ` ( L ` g ) ) ) /\ k e. R ) -> U e. LMod ) |
| 82 |
18
|
3ad2ant1 |
|- ( ( ph /\ g e. G /\ X e. ( ._|_ ` ( L ` g ) ) ) -> G e. P ) |
| 83 |
82
|
adantr |
|- ( ( ( ph /\ g e. G /\ X e. ( ._|_ ` ( L ` g ) ) ) /\ k e. R ) -> G e. P ) |
| 84 |
|
simpr |
|- ( ( ( ph /\ g e. G /\ X e. ( ._|_ ` ( L ` g ) ) ) /\ k e. R ) -> k e. R ) |
| 85 |
|
simpl2 |
|- ( ( ( ph /\ g e. G /\ X e. ( ._|_ ` ( L ` g ) ) ) /\ k e. R ) -> g e. G ) |
| 86 |
7 8 12 26 17 81 83 84 85
|
ldualssvscl |
|- ( ( ( ph /\ g e. G /\ X e. ( ._|_ ` ( L ` g ) ) ) /\ k e. R ) -> ( k ( .s ` D ) g ) e. G ) |
| 87 |
|
eleq1 |
|- ( ( J ` X ) = ( k ( .s ` D ) g ) -> ( ( J ` X ) e. G <-> ( k ( .s ` D ) g ) e. G ) ) |
| 88 |
86 87
|
syl5ibrcom |
|- ( ( ( ph /\ g e. G /\ X e. ( ._|_ ` ( L ` g ) ) ) /\ k e. R ) -> ( ( J ` X ) = ( k ( .s ` D ) g ) -> ( J ` X ) e. G ) ) |
| 89 |
88
|
rexlimdva |
|- ( ( ph /\ g e. G /\ X e. ( ._|_ ` ( L ` g ) ) ) -> ( E. k e. R ( J ` X ) = ( k ( .s ` D ) g ) -> ( J ` X ) e. G ) ) |
| 90 |
79 89
|
mpd |
|- ( ( ph /\ g e. G /\ X e. ( ._|_ ` ( L ` g ) ) ) -> ( J ` X ) e. G ) |
| 91 |
90
|
rexlimdv3a |
|- ( ph -> ( E. g e. G X e. ( ._|_ ` ( L ` g ) ) -> ( J ` X ) e. G ) ) |
| 92 |
25 91
|
mpd |
|- ( ph -> ( J ` X ) e. G ) |