| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcf1o.h |
|- H = ( LHyp ` K ) |
| 2 |
|
lcf1o.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
| 3 |
|
lcf1o.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 4 |
|
lcf1o.v |
|- V = ( Base ` U ) |
| 5 |
|
lcf1o.a |
|- .+ = ( +g ` U ) |
| 6 |
|
lcf1o.t |
|- .x. = ( .s ` U ) |
| 7 |
|
lcf1o.s |
|- S = ( Scalar ` U ) |
| 8 |
|
lcf1o.r |
|- R = ( Base ` S ) |
| 9 |
|
lcf1o.z |
|- .0. = ( 0g ` U ) |
| 10 |
|
lcf1o.f |
|- F = ( LFnl ` U ) |
| 11 |
|
lcf1o.l |
|- L = ( LKer ` U ) |
| 12 |
|
lcf1o.d |
|- D = ( LDual ` U ) |
| 13 |
|
lcf1o.q |
|- Q = ( 0g ` D ) |
| 14 |
|
lcf1o.c |
|- C = { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } |
| 15 |
|
lcf1o.j |
|- J = ( x e. ( V \ { .0. } ) |-> ( v e. V |-> ( iota_ k e. R E. w e. ( ._|_ ` { x } ) v = ( w .+ ( k .x. x ) ) ) ) ) |
| 16 |
|
lcflo.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 17 |
|
lcfrlem10.x |
|- ( ph -> X e. ( V \ { .0. } ) ) |
| 18 |
1 3 16
|
dvhlmod |
|- ( ph -> U e. LMod ) |
| 19 |
17
|
eldifad |
|- ( ph -> X e. V ) |
| 20 |
|
eqid |
|- ( LSpan ` U ) = ( LSpan ` U ) |
| 21 |
4 20
|
lspsnid |
|- ( ( U e. LMod /\ X e. V ) -> X e. ( ( LSpan ` U ) ` { X } ) ) |
| 22 |
18 19 21
|
syl2anc |
|- ( ph -> X e. ( ( LSpan ` U ) ` { X } ) ) |
| 23 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 20
|
lcfrlem14 |
|- ( ph -> ( ._|_ ` ( L ` ( J ` X ) ) ) = ( ( LSpan ` U ) ` { X } ) ) |
| 24 |
22 23
|
eleqtrrd |
|- ( ph -> X e. ( ._|_ ` ( L ` ( J ` X ) ) ) ) |