Step |
Hyp |
Ref |
Expression |
1 |
|
lcf1o.h |
|- H = ( LHyp ` K ) |
2 |
|
lcf1o.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
3 |
|
lcf1o.u |
|- U = ( ( DVecH ` K ) ` W ) |
4 |
|
lcf1o.v |
|- V = ( Base ` U ) |
5 |
|
lcf1o.a |
|- .+ = ( +g ` U ) |
6 |
|
lcf1o.t |
|- .x. = ( .s ` U ) |
7 |
|
lcf1o.s |
|- S = ( Scalar ` U ) |
8 |
|
lcf1o.r |
|- R = ( Base ` S ) |
9 |
|
lcf1o.z |
|- .0. = ( 0g ` U ) |
10 |
|
lcf1o.f |
|- F = ( LFnl ` U ) |
11 |
|
lcf1o.l |
|- L = ( LKer ` U ) |
12 |
|
lcf1o.d |
|- D = ( LDual ` U ) |
13 |
|
lcf1o.q |
|- Q = ( 0g ` D ) |
14 |
|
lcf1o.c |
|- C = { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } |
15 |
|
lcf1o.j |
|- J = ( x e. ( V \ { .0. } ) |-> ( v e. V |-> ( iota_ k e. R E. w e. ( ._|_ ` { x } ) v = ( w .+ ( k .x. x ) ) ) ) ) |
16 |
|
lcflo.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
17 |
|
lcfrlem10.x |
|- ( ph -> X e. ( V \ { .0. } ) ) |
18 |
|
lcfrlem14.n |
|- N = ( LSpan ` U ) |
19 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
|
lcfrlem11 |
|- ( ph -> ( L ` ( J ` X ) ) = ( ._|_ ` { X } ) ) |
20 |
17
|
eldifad |
|- ( ph -> X e. V ) |
21 |
20
|
snssd |
|- ( ph -> { X } C_ V ) |
22 |
1 3 2 4 18 16 21
|
dochocsp |
|- ( ph -> ( ._|_ ` ( N ` { X } ) ) = ( ._|_ ` { X } ) ) |
23 |
19 22
|
eqtr4d |
|- ( ph -> ( L ` ( J ` X ) ) = ( ._|_ ` ( N ` { X } ) ) ) |
24 |
23
|
fveq2d |
|- ( ph -> ( ._|_ ` ( L ` ( J ` X ) ) ) = ( ._|_ ` ( ._|_ ` ( N ` { X } ) ) ) ) |
25 |
|
eqid |
|- ( ( DIsoH ` K ) ` W ) = ( ( DIsoH ` K ) ` W ) |
26 |
1 3 4 18 25
|
dihlsprn |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. V ) -> ( N ` { X } ) e. ran ( ( DIsoH ` K ) ` W ) ) |
27 |
16 20 26
|
syl2anc |
|- ( ph -> ( N ` { X } ) e. ran ( ( DIsoH ` K ) ` W ) ) |
28 |
1 25 2
|
dochoc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( N ` { X } ) e. ran ( ( DIsoH ` K ) ` W ) ) -> ( ._|_ ` ( ._|_ ` ( N ` { X } ) ) ) = ( N ` { X } ) ) |
29 |
16 27 28
|
syl2anc |
|- ( ph -> ( ._|_ ` ( ._|_ ` ( N ` { X } ) ) ) = ( N ` { X } ) ) |
30 |
24 29
|
eqtrd |
|- ( ph -> ( ._|_ ` ( L ` ( J ` X ) ) ) = ( N ` { X } ) ) |