Metamath Proof Explorer


Theorem lcfrlem14

Description: Lemma for lcfr . (Contributed by NM, 10-Mar-2015)

Ref Expression
Hypotheses lcf1o.h H=LHypK
lcf1o.o ˙=ocHKW
lcf1o.u U=DVecHKW
lcf1o.v V=BaseU
lcf1o.a +˙=+U
lcf1o.t ·˙=U
lcf1o.s S=ScalarU
lcf1o.r R=BaseS
lcf1o.z 0˙=0U
lcf1o.f F=LFnlU
lcf1o.l L=LKerU
lcf1o.d D=LDualU
lcf1o.q Q=0D
lcf1o.c C=fF|˙˙Lf=Lf
lcf1o.j J=xV0˙vVιkR|w˙xv=w+˙k·˙x
lcflo.k φKHLWH
lcfrlem10.x φXV0˙
lcfrlem14.n N=LSpanU
Assertion lcfrlem14 φ˙LJX=NX

Proof

Step Hyp Ref Expression
1 lcf1o.h H=LHypK
2 lcf1o.o ˙=ocHKW
3 lcf1o.u U=DVecHKW
4 lcf1o.v V=BaseU
5 lcf1o.a +˙=+U
6 lcf1o.t ·˙=U
7 lcf1o.s S=ScalarU
8 lcf1o.r R=BaseS
9 lcf1o.z 0˙=0U
10 lcf1o.f F=LFnlU
11 lcf1o.l L=LKerU
12 lcf1o.d D=LDualU
13 lcf1o.q Q=0D
14 lcf1o.c C=fF|˙˙Lf=Lf
15 lcf1o.j J=xV0˙vVιkR|w˙xv=w+˙k·˙x
16 lcflo.k φKHLWH
17 lcfrlem10.x φXV0˙
18 lcfrlem14.n N=LSpanU
19 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 lcfrlem11 φLJX=˙X
20 17 eldifad φXV
21 20 snssd φXV
22 1 3 2 4 18 16 21 dochocsp φ˙NX=˙X
23 19 22 eqtr4d φLJX=˙NX
24 23 fveq2d φ˙LJX=˙˙NX
25 eqid DIsoHKW=DIsoHKW
26 1 3 4 18 25 dihlsprn KHLWHXVNXranDIsoHKW
27 16 20 26 syl2anc φNXranDIsoHKW
28 1 25 2 dochoc KHLWHNXranDIsoHKW˙˙NX=NX
29 16 27 28 syl2anc φ˙˙NX=NX
30 24 29 eqtrd φ˙LJX=NX