Description: Lemma for lcfr . (Contributed by NM, 8-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lcf1o.h | |- H = ( LHyp ` K ) |
|
| lcf1o.o | |- ._|_ = ( ( ocH ` K ) ` W ) |
||
| lcf1o.u | |- U = ( ( DVecH ` K ) ` W ) |
||
| lcf1o.v | |- V = ( Base ` U ) |
||
| lcf1o.a | |- .+ = ( +g ` U ) |
||
| lcf1o.t | |- .x. = ( .s ` U ) |
||
| lcf1o.s | |- S = ( Scalar ` U ) |
||
| lcf1o.r | |- R = ( Base ` S ) |
||
| lcf1o.z | |- .0. = ( 0g ` U ) |
||
| lcf1o.f | |- F = ( LFnl ` U ) |
||
| lcf1o.l | |- L = ( LKer ` U ) |
||
| lcf1o.d | |- D = ( LDual ` U ) |
||
| lcf1o.q | |- Q = ( 0g ` D ) |
||
| lcf1o.c | |- C = { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } |
||
| lcf1o.j | |- J = ( x e. ( V \ { .0. } ) |-> ( v e. V |-> ( iota_ k e. R E. w e. ( ._|_ ` { x } ) v = ( w .+ ( k .x. x ) ) ) ) ) |
||
| lcflo.k | |- ( ph -> ( K e. HL /\ W e. H ) ) |
||
| lcfrlem10.x | |- ( ph -> X e. ( V \ { .0. } ) ) |
||
| Assertion | lcfrlem13 | |- ( ph -> ( J ` X ) e. ( C \ { Q } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcf1o.h | |- H = ( LHyp ` K ) |
|
| 2 | lcf1o.o | |- ._|_ = ( ( ocH ` K ) ` W ) |
|
| 3 | lcf1o.u | |- U = ( ( DVecH ` K ) ` W ) |
|
| 4 | lcf1o.v | |- V = ( Base ` U ) |
|
| 5 | lcf1o.a | |- .+ = ( +g ` U ) |
|
| 6 | lcf1o.t | |- .x. = ( .s ` U ) |
|
| 7 | lcf1o.s | |- S = ( Scalar ` U ) |
|
| 8 | lcf1o.r | |- R = ( Base ` S ) |
|
| 9 | lcf1o.z | |- .0. = ( 0g ` U ) |
|
| 10 | lcf1o.f | |- F = ( LFnl ` U ) |
|
| 11 | lcf1o.l | |- L = ( LKer ` U ) |
|
| 12 | lcf1o.d | |- D = ( LDual ` U ) |
|
| 13 | lcf1o.q | |- Q = ( 0g ` D ) |
|
| 14 | lcf1o.c | |- C = { f e. F | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } |
|
| 15 | lcf1o.j | |- J = ( x e. ( V \ { .0. } ) |-> ( v e. V |-> ( iota_ k e. R E. w e. ( ._|_ ` { x } ) v = ( w .+ ( k .x. x ) ) ) ) ) |
|
| 16 | lcflo.k | |- ( ph -> ( K e. HL /\ W e. H ) ) |
|
| 17 | lcfrlem10.x | |- ( ph -> X e. ( V \ { .0. } ) ) |
|
| 18 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | lcf1o | |- ( ph -> J : ( V \ { .0. } ) -1-1-onto-> ( C \ { Q } ) ) |
| 19 | f1of | |- ( J : ( V \ { .0. } ) -1-1-onto-> ( C \ { Q } ) -> J : ( V \ { .0. } ) --> ( C \ { Q } ) ) |
|
| 20 | 18 19 | syl | |- ( ph -> J : ( V \ { .0. } ) --> ( C \ { Q } ) ) |
| 21 | 20 17 | ffvelcdmd | |- ( ph -> ( J ` X ) e. ( C \ { Q } ) ) |