| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcfrlem17.h |
|- H = ( LHyp ` K ) |
| 2 |
|
lcfrlem17.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
| 3 |
|
lcfrlem17.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 4 |
|
lcfrlem17.v |
|- V = ( Base ` U ) |
| 5 |
|
lcfrlem17.p |
|- .+ = ( +g ` U ) |
| 6 |
|
lcfrlem17.z |
|- .0. = ( 0g ` U ) |
| 7 |
|
lcfrlem17.n |
|- N = ( LSpan ` U ) |
| 8 |
|
lcfrlem17.a |
|- A = ( LSAtoms ` U ) |
| 9 |
|
lcfrlem17.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 10 |
|
lcfrlem17.x |
|- ( ph -> X e. ( V \ { .0. } ) ) |
| 11 |
|
lcfrlem17.y |
|- ( ph -> Y e. ( V \ { .0. } ) ) |
| 12 |
|
lcfrlem17.ne |
|- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) |
| 13 |
1 3 9
|
dvhlmod |
|- ( ph -> U e. LMod ) |
| 14 |
10
|
eldifad |
|- ( ph -> X e. V ) |
| 15 |
11
|
eldifad |
|- ( ph -> Y e. V ) |
| 16 |
4 5
|
lmodvacl |
|- ( ( U e. LMod /\ X e. V /\ Y e. V ) -> ( X .+ Y ) e. V ) |
| 17 |
13 14 15 16
|
syl3anc |
|- ( ph -> ( X .+ Y ) e. V ) |
| 18 |
4 5 6 7 13 14 15 12
|
lmodindp1 |
|- ( ph -> ( X .+ Y ) =/= .0. ) |
| 19 |
|
eldifsn |
|- ( ( X .+ Y ) e. ( V \ { .0. } ) <-> ( ( X .+ Y ) e. V /\ ( X .+ Y ) =/= .0. ) ) |
| 20 |
17 18 19
|
sylanbrc |
|- ( ph -> ( X .+ Y ) e. ( V \ { .0. } ) ) |