Step |
Hyp |
Ref |
Expression |
1 |
|
lcfrlem17.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
lcfrlem17.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
lcfrlem17.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
lcfrlem17.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
5 |
|
lcfrlem17.p |
⊢ + = ( +g ‘ 𝑈 ) |
6 |
|
lcfrlem17.z |
⊢ 0 = ( 0g ‘ 𝑈 ) |
7 |
|
lcfrlem17.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
8 |
|
lcfrlem17.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑈 ) |
9 |
|
lcfrlem17.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
10 |
|
lcfrlem17.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
11 |
|
lcfrlem17.y |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) |
12 |
|
lcfrlem17.ne |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |
13 |
1 3 9
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
14 |
10
|
eldifad |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
15 |
11
|
eldifad |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
16 |
4 5
|
lmodvacl |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 + 𝑌 ) ∈ 𝑉 ) |
17 |
13 14 15 16
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ 𝑉 ) |
18 |
4 5 6 7 13 14 15 12
|
lmodindp1 |
⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) ≠ 0 ) |
19 |
|
eldifsn |
⊢ ( ( 𝑋 + 𝑌 ) ∈ ( 𝑉 ∖ { 0 } ) ↔ ( ( 𝑋 + 𝑌 ) ∈ 𝑉 ∧ ( 𝑋 + 𝑌 ) ≠ 0 ) ) |
20 |
17 18 19
|
sylanbrc |
⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ ( 𝑉 ∖ { 0 } ) ) |