| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcfrlem17.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
lcfrlem17.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
lcfrlem17.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
lcfrlem17.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
| 5 |
|
lcfrlem17.p |
⊢ + = ( +g ‘ 𝑈 ) |
| 6 |
|
lcfrlem17.z |
⊢ 0 = ( 0g ‘ 𝑈 ) |
| 7 |
|
lcfrlem17.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
| 8 |
|
lcfrlem17.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑈 ) |
| 9 |
|
lcfrlem17.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 10 |
|
lcfrlem17.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 11 |
|
lcfrlem17.y |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 12 |
|
lcfrlem17.ne |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |
| 13 |
|
df-pr |
⊢ { 𝑋 , 𝑌 } = ( { 𝑋 } ∪ { 𝑌 } ) |
| 14 |
13
|
fveq2i |
⊢ ( ⊥ ‘ { 𝑋 , 𝑌 } ) = ( ⊥ ‘ ( { 𝑋 } ∪ { 𝑌 } ) ) |
| 15 |
10
|
eldifad |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 16 |
15
|
snssd |
⊢ ( 𝜑 → { 𝑋 } ⊆ 𝑉 ) |
| 17 |
11
|
eldifad |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
| 18 |
17
|
snssd |
⊢ ( 𝜑 → { 𝑌 } ⊆ 𝑉 ) |
| 19 |
1 3 4 2
|
dochdmj1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ { 𝑋 } ⊆ 𝑉 ∧ { 𝑌 } ⊆ 𝑉 ) → ( ⊥ ‘ ( { 𝑋 } ∪ { 𝑌 } ) ) = ( ( ⊥ ‘ { 𝑋 } ) ∩ ( ⊥ ‘ { 𝑌 } ) ) ) |
| 20 |
9 16 18 19
|
syl3anc |
⊢ ( 𝜑 → ( ⊥ ‘ ( { 𝑋 } ∪ { 𝑌 } ) ) = ( ( ⊥ ‘ { 𝑋 } ) ∩ ( ⊥ ‘ { 𝑌 } ) ) ) |
| 21 |
14 20
|
eqtrid |
⊢ ( 𝜑 → ( ⊥ ‘ { 𝑋 , 𝑌 } ) = ( ( ⊥ ‘ { 𝑋 } ) ∩ ( ⊥ ‘ { 𝑌 } ) ) ) |