Step |
Hyp |
Ref |
Expression |
1 |
|
lcfrlem17.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
lcfrlem17.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
lcfrlem17.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
lcfrlem17.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
5 |
|
lcfrlem17.p |
⊢ + = ( +g ‘ 𝑈 ) |
6 |
|
lcfrlem17.z |
⊢ 0 = ( 0g ‘ 𝑈 ) |
7 |
|
lcfrlem17.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
8 |
|
lcfrlem17.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑈 ) |
9 |
|
lcfrlem17.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
10 |
|
lcfrlem17.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
11 |
|
lcfrlem17.y |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) |
12 |
|
lcfrlem17.ne |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |
13 |
1 2 3 4 5 6 7 8 9 10 11 12
|
lcfrlem17 |
⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ ( 𝑉 ∖ { 0 } ) ) |
14 |
1 2 3 4 6 9 13
|
dochnel |
⊢ ( 𝜑 → ¬ ( 𝑋 + 𝑌 ) ∈ ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) ) |
15 |
1 3 9
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) ∧ 𝑌 ∈ ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) ) ) → 𝑈 ∈ LMod ) |
17 |
10
|
eldifad |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
18 |
11
|
eldifad |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
19 |
4 5
|
lmodvacl |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 + 𝑌 ) ∈ 𝑉 ) |
20 |
15 17 18 19
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ 𝑉 ) |
21 |
20
|
snssd |
⊢ ( 𝜑 → { ( 𝑋 + 𝑌 ) } ⊆ 𝑉 ) |
22 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
23 |
1 3 4 22 2
|
dochlss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ { ( 𝑋 + 𝑌 ) } ⊆ 𝑉 ) → ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
24 |
9 21 23
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
25 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) ∧ 𝑌 ∈ ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) ) ) → ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
26 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) ∧ 𝑌 ∈ ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) ) ) → ( 𝑋 ∈ ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) ∧ 𝑌 ∈ ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) ) ) |
27 |
5 22
|
lssvacl |
⊢ ( ( ( 𝑈 ∈ LMod ∧ ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) ∈ ( LSubSp ‘ 𝑈 ) ) ∧ ( 𝑋 ∈ ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) ∧ 𝑌 ∈ ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) ) ) → ( 𝑋 + 𝑌 ) ∈ ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) ) |
28 |
16 25 26 27
|
syl21anc |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) ∧ 𝑌 ∈ ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) ) ) → ( 𝑋 + 𝑌 ) ∈ ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) ) |
29 |
14 28
|
mtand |
⊢ ( 𝜑 → ¬ ( 𝑋 ∈ ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) ∧ 𝑌 ∈ ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) ) ) |
30 |
|
ianor |
⊢ ( ¬ ( 𝑋 ∈ ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) ∧ 𝑌 ∈ ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) ) ↔ ( ¬ 𝑋 ∈ ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) ∨ ¬ 𝑌 ∈ ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) ) ) |
31 |
29 30
|
sylib |
⊢ ( 𝜑 → ( ¬ 𝑋 ∈ ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) ∨ ¬ 𝑌 ∈ ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) ) ) |