| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcfrlem17.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
lcfrlem17.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
lcfrlem17.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
lcfrlem17.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
| 5 |
|
lcfrlem17.p |
⊢ + = ( +g ‘ 𝑈 ) |
| 6 |
|
lcfrlem17.z |
⊢ 0 = ( 0g ‘ 𝑈 ) |
| 7 |
|
lcfrlem17.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
| 8 |
|
lcfrlem17.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑈 ) |
| 9 |
|
lcfrlem17.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 10 |
|
lcfrlem17.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 11 |
|
lcfrlem17.y |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 12 |
|
lcfrlem17.ne |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |
| 13 |
|
lcfrlem20.e |
⊢ ( 𝜑 → ¬ 𝑋 ∈ ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) ) |
| 14 |
|
eqid |
⊢ ( LSSum ‘ 𝑈 ) = ( LSSum ‘ 𝑈 ) |
| 15 |
1 3 9
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
| 16 |
10
|
eldifad |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 17 |
11
|
eldifad |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
| 18 |
4 7 14 15 16 17
|
lsmpr |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) = ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 19 |
18
|
ineq1d |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∩ ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) ) = ( ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑌 } ) ) ∩ ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) ) ) |
| 20 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
| 21 |
|
eqid |
⊢ ( LSHyp ‘ 𝑈 ) = ( LSHyp ‘ 𝑈 ) |
| 22 |
1 3 9
|
dvhlvec |
⊢ ( 𝜑 → 𝑈 ∈ LVec ) |
| 23 |
1 2 3 4 5 6 7 8 9 10 11 12
|
lcfrlem17 |
⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ ( 𝑉 ∖ { 0 } ) ) |
| 24 |
1 2 3 4 6 21 9 23
|
dochsnshp |
⊢ ( 𝜑 → ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) ∈ ( LSHyp ‘ 𝑈 ) ) |
| 25 |
4 7 6 8 15 10
|
lsatlspsn |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ∈ 𝐴 ) |
| 26 |
4 7 6 8 15 11
|
lsatlspsn |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ∈ 𝐴 ) |
| 27 |
4 5
|
lmodvacl |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 + 𝑌 ) ∈ 𝑉 ) |
| 28 |
15 16 17 27
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ 𝑉 ) |
| 29 |
28
|
snssd |
⊢ ( 𝜑 → { ( 𝑋 + 𝑌 ) } ⊆ 𝑉 ) |
| 30 |
1 3 4 20 2
|
dochlss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ { ( 𝑋 + 𝑌 ) } ⊆ 𝑉 ) → ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 31 |
9 29 30
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 32 |
4 20 7 15 31 16
|
ellspsn5b |
⊢ ( 𝜑 → ( 𝑋 ∈ ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) ↔ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) ) ) |
| 33 |
13 32
|
mtbid |
⊢ ( 𝜑 → ¬ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) ) |
| 34 |
20 14 21 8 22 24 25 26 12 33
|
lshpat |
⊢ ( 𝜑 → ( ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑌 } ) ) ∩ ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) ) ∈ 𝐴 ) |
| 35 |
19 34
|
eqeltrd |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∩ ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) ) ∈ 𝐴 ) |