Step |
Hyp |
Ref |
Expression |
1 |
|
lcfrlem17.h |
|- H = ( LHyp ` K ) |
2 |
|
lcfrlem17.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
3 |
|
lcfrlem17.u |
|- U = ( ( DVecH ` K ) ` W ) |
4 |
|
lcfrlem17.v |
|- V = ( Base ` U ) |
5 |
|
lcfrlem17.p |
|- .+ = ( +g ` U ) |
6 |
|
lcfrlem17.z |
|- .0. = ( 0g ` U ) |
7 |
|
lcfrlem17.n |
|- N = ( LSpan ` U ) |
8 |
|
lcfrlem17.a |
|- A = ( LSAtoms ` U ) |
9 |
|
lcfrlem17.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
10 |
|
lcfrlem17.x |
|- ( ph -> X e. ( V \ { .0. } ) ) |
11 |
|
lcfrlem17.y |
|- ( ph -> Y e. ( V \ { .0. } ) ) |
12 |
|
lcfrlem17.ne |
|- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) |
13 |
|
lcfrlem20.e |
|- ( ph -> -. X e. ( ._|_ ` { ( X .+ Y ) } ) ) |
14 |
|
eqid |
|- ( LSSum ` U ) = ( LSSum ` U ) |
15 |
1 3 9
|
dvhlmod |
|- ( ph -> U e. LMod ) |
16 |
10
|
eldifad |
|- ( ph -> X e. V ) |
17 |
11
|
eldifad |
|- ( ph -> Y e. V ) |
18 |
4 7 14 15 16 17
|
lsmpr |
|- ( ph -> ( N ` { X , Y } ) = ( ( N ` { X } ) ( LSSum ` U ) ( N ` { Y } ) ) ) |
19 |
18
|
ineq1d |
|- ( ph -> ( ( N ` { X , Y } ) i^i ( ._|_ ` { ( X .+ Y ) } ) ) = ( ( ( N ` { X } ) ( LSSum ` U ) ( N ` { Y } ) ) i^i ( ._|_ ` { ( X .+ Y ) } ) ) ) |
20 |
|
eqid |
|- ( LSubSp ` U ) = ( LSubSp ` U ) |
21 |
|
eqid |
|- ( LSHyp ` U ) = ( LSHyp ` U ) |
22 |
1 3 9
|
dvhlvec |
|- ( ph -> U e. LVec ) |
23 |
1 2 3 4 5 6 7 8 9 10 11 12
|
lcfrlem17 |
|- ( ph -> ( X .+ Y ) e. ( V \ { .0. } ) ) |
24 |
1 2 3 4 6 21 9 23
|
dochsnshp |
|- ( ph -> ( ._|_ ` { ( X .+ Y ) } ) e. ( LSHyp ` U ) ) |
25 |
4 7 6 8 15 10
|
lsatlspsn |
|- ( ph -> ( N ` { X } ) e. A ) |
26 |
4 7 6 8 15 11
|
lsatlspsn |
|- ( ph -> ( N ` { Y } ) e. A ) |
27 |
4 5
|
lmodvacl |
|- ( ( U e. LMod /\ X e. V /\ Y e. V ) -> ( X .+ Y ) e. V ) |
28 |
15 16 17 27
|
syl3anc |
|- ( ph -> ( X .+ Y ) e. V ) |
29 |
28
|
snssd |
|- ( ph -> { ( X .+ Y ) } C_ V ) |
30 |
1 3 4 20 2
|
dochlss |
|- ( ( ( K e. HL /\ W e. H ) /\ { ( X .+ Y ) } C_ V ) -> ( ._|_ ` { ( X .+ Y ) } ) e. ( LSubSp ` U ) ) |
31 |
9 29 30
|
syl2anc |
|- ( ph -> ( ._|_ ` { ( X .+ Y ) } ) e. ( LSubSp ` U ) ) |
32 |
4 20 7 15 31 16
|
lspsnel5 |
|- ( ph -> ( X e. ( ._|_ ` { ( X .+ Y ) } ) <-> ( N ` { X } ) C_ ( ._|_ ` { ( X .+ Y ) } ) ) ) |
33 |
13 32
|
mtbid |
|- ( ph -> -. ( N ` { X } ) C_ ( ._|_ ` { ( X .+ Y ) } ) ) |
34 |
20 14 21 8 22 24 25 26 12 33
|
lshpat |
|- ( ph -> ( ( ( N ` { X } ) ( LSSum ` U ) ( N ` { Y } ) ) i^i ( ._|_ ` { ( X .+ Y ) } ) ) e. A ) |
35 |
19 34
|
eqeltrd |
|- ( ph -> ( ( N ` { X , Y } ) i^i ( ._|_ ` { ( X .+ Y ) } ) ) e. A ) |