Metamath Proof Explorer


Theorem lcfrlem19

Description: Lemma for lcfr . (Contributed by NM, 11-Mar-2015)

Ref Expression
Hypotheses lcfrlem17.h H=LHypK
lcfrlem17.o ˙=ocHKW
lcfrlem17.u U=DVecHKW
lcfrlem17.v V=BaseU
lcfrlem17.p +˙=+U
lcfrlem17.z 0˙=0U
lcfrlem17.n N=LSpanU
lcfrlem17.a A=LSAtomsU
lcfrlem17.k φKHLWH
lcfrlem17.x φXV0˙
lcfrlem17.y φYV0˙
lcfrlem17.ne φNXNY
Assertion lcfrlem19 φ¬X˙X+˙Y¬Y˙X+˙Y

Proof

Step Hyp Ref Expression
1 lcfrlem17.h H=LHypK
2 lcfrlem17.o ˙=ocHKW
3 lcfrlem17.u U=DVecHKW
4 lcfrlem17.v V=BaseU
5 lcfrlem17.p +˙=+U
6 lcfrlem17.z 0˙=0U
7 lcfrlem17.n N=LSpanU
8 lcfrlem17.a A=LSAtomsU
9 lcfrlem17.k φKHLWH
10 lcfrlem17.x φXV0˙
11 lcfrlem17.y φYV0˙
12 lcfrlem17.ne φNXNY
13 1 2 3 4 5 6 7 8 9 10 11 12 lcfrlem17 φX+˙YV0˙
14 1 2 3 4 6 9 13 dochnel φ¬X+˙Y˙X+˙Y
15 1 3 9 dvhlmod φULMod
16 15 adantr φX˙X+˙YY˙X+˙YULMod
17 10 eldifad φXV
18 11 eldifad φYV
19 4 5 lmodvacl ULModXVYVX+˙YV
20 15 17 18 19 syl3anc φX+˙YV
21 20 snssd φX+˙YV
22 eqid LSubSpU=LSubSpU
23 1 3 4 22 2 dochlss KHLWHX+˙YV˙X+˙YLSubSpU
24 9 21 23 syl2anc φ˙X+˙YLSubSpU
25 24 adantr φX˙X+˙YY˙X+˙Y˙X+˙YLSubSpU
26 simpr φX˙X+˙YY˙X+˙YX˙X+˙YY˙X+˙Y
27 5 22 lssvacl ULMod˙X+˙YLSubSpUX˙X+˙YY˙X+˙YX+˙Y˙X+˙Y
28 16 25 26 27 syl21anc φX˙X+˙YY˙X+˙YX+˙Y˙X+˙Y
29 14 28 mtand φ¬X˙X+˙YY˙X+˙Y
30 ianor ¬X˙X+˙YY˙X+˙Y¬X˙X+˙Y¬Y˙X+˙Y
31 29 30 sylib φ¬X˙X+˙Y¬Y˙X+˙Y