Metamath Proof Explorer


Theorem lcfrlem18

Description: Lemma for lcfr . (Contributed by NM, 24-Feb-2015)

Ref Expression
Hypotheses lcfrlem17.h H=LHypK
lcfrlem17.o ˙=ocHKW
lcfrlem17.u U=DVecHKW
lcfrlem17.v V=BaseU
lcfrlem17.p +˙=+U
lcfrlem17.z 0˙=0U
lcfrlem17.n N=LSpanU
lcfrlem17.a A=LSAtomsU
lcfrlem17.k φKHLWH
lcfrlem17.x φXV0˙
lcfrlem17.y φYV0˙
lcfrlem17.ne φNXNY
Assertion lcfrlem18 φ˙XY=˙X˙Y

Proof

Step Hyp Ref Expression
1 lcfrlem17.h H=LHypK
2 lcfrlem17.o ˙=ocHKW
3 lcfrlem17.u U=DVecHKW
4 lcfrlem17.v V=BaseU
5 lcfrlem17.p +˙=+U
6 lcfrlem17.z 0˙=0U
7 lcfrlem17.n N=LSpanU
8 lcfrlem17.a A=LSAtomsU
9 lcfrlem17.k φKHLWH
10 lcfrlem17.x φXV0˙
11 lcfrlem17.y φYV0˙
12 lcfrlem17.ne φNXNY
13 df-pr XY=XY
14 13 fveq2i ˙XY=˙XY
15 10 eldifad φXV
16 15 snssd φXV
17 11 eldifad φYV
18 17 snssd φYV
19 1 3 4 2 dochdmj1 KHLWHXVYV˙XY=˙X˙Y
20 9 16 18 19 syl3anc φ˙XY=˙X˙Y
21 14 20 eqtrid φ˙XY=˙X˙Y