Step |
Hyp |
Ref |
Expression |
1 |
|
lcfrlem17.h |
|- H = ( LHyp ` K ) |
2 |
|
lcfrlem17.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
3 |
|
lcfrlem17.u |
|- U = ( ( DVecH ` K ) ` W ) |
4 |
|
lcfrlem17.v |
|- V = ( Base ` U ) |
5 |
|
lcfrlem17.p |
|- .+ = ( +g ` U ) |
6 |
|
lcfrlem17.z |
|- .0. = ( 0g ` U ) |
7 |
|
lcfrlem17.n |
|- N = ( LSpan ` U ) |
8 |
|
lcfrlem17.a |
|- A = ( LSAtoms ` U ) |
9 |
|
lcfrlem17.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
10 |
|
lcfrlem17.x |
|- ( ph -> X e. ( V \ { .0. } ) ) |
11 |
|
lcfrlem17.y |
|- ( ph -> Y e. ( V \ { .0. } ) ) |
12 |
|
lcfrlem17.ne |
|- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) |
13 |
|
lcfrlem22.b |
|- B = ( ( N ` { X , Y } ) i^i ( ._|_ ` { ( X .+ Y ) } ) ) |
14 |
|
lcfrlem24.t |
|- .x. = ( .s ` U ) |
15 |
|
lcfrlem24.s |
|- S = ( Scalar ` U ) |
16 |
|
lcfrlem24.q |
|- Q = ( 0g ` S ) |
17 |
|
lcfrlem24.r |
|- R = ( Base ` S ) |
18 |
|
lcfrlem24.j |
|- J = ( x e. ( V \ { .0. } ) |-> ( v e. V |-> ( iota_ k e. R E. w e. ( ._|_ ` { x } ) v = ( w .+ ( k .x. x ) ) ) ) ) |
19 |
|
lcfrlem24.ib |
|- ( ph -> I e. B ) |
20 |
|
lcfrlem24.l |
|- L = ( LKer ` U ) |
21 |
|
lcfrlem25.d |
|- D = ( LDual ` U ) |
22 |
|
lcfrlem28.jn |
|- ( ph -> ( ( J ` Y ) ` I ) =/= Q ) |
23 |
|
lcfrlem29.i |
|- F = ( invr ` S ) |
24 |
|
lcfrlem30.m |
|- .- = ( -g ` D ) |
25 |
|
lcfrlem30.c |
|- C = ( ( J ` X ) .- ( ( ( F ` ( ( J ` Y ) ` I ) ) ( .r ` S ) ( ( J ` X ) ` I ) ) ( .s ` D ) ( J ` Y ) ) ) |
26 |
|
lcfrlem37.g |
|- ( ph -> G e. ( LSubSp ` D ) ) |
27 |
|
lcfrlem37.gs |
|- ( ph -> G C_ { f e. ( LFnl ` U ) | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } ) |
28 |
|
lcfrlem37.e |
|- E = U_ g e. G ( ._|_ ` ( L ` g ) ) |
29 |
|
lcfrlem37.xe |
|- ( ph -> X e. E ) |
30 |
|
lcfrlem37.ye |
|- ( ph -> Y e. E ) |
31 |
|
eqid |
|- ( LSubSp ` D ) = ( LSubSp ` D ) |
32 |
1 3 9
|
dvhlmod |
|- ( ph -> U e. LMod ) |
33 |
|
eqid |
|- ( LFnl ` U ) = ( LFnl ` U ) |
34 |
|
eqid |
|- ( 0g ` D ) = ( 0g ` D ) |
35 |
|
eqid |
|- { f e. ( LFnl ` U ) | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } = { f e. ( LFnl ` U ) | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } |
36 |
|
eldifsni |
|- ( X e. ( V \ { .0. } ) -> X =/= .0. ) |
37 |
10 36
|
syl |
|- ( ph -> X =/= .0. ) |
38 |
|
eldifsn |
|- ( X e. ( E \ { .0. } ) <-> ( X e. E /\ X =/= .0. ) ) |
39 |
29 37 38
|
sylanbrc |
|- ( ph -> X e. ( E \ { .0. } ) ) |
40 |
1 2 3 4 5 14 15 17 6 33 20 21 34 35 18 9 31 26 27 28 39
|
lcfrlem16 |
|- ( ph -> ( J ` X ) e. G ) |
41 |
|
eqid |
|- ( .s ` D ) = ( .s ` D ) |
42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
|
lcfrlem29 |
|- ( ph -> ( ( F ` ( ( J ` Y ) ` I ) ) ( .r ` S ) ( ( J ` X ) ` I ) ) e. R ) |
43 |
|
eldifsni |
|- ( Y e. ( V \ { .0. } ) -> Y =/= .0. ) |
44 |
11 43
|
syl |
|- ( ph -> Y =/= .0. ) |
45 |
|
eldifsn |
|- ( Y e. ( E \ { .0. } ) <-> ( Y e. E /\ Y =/= .0. ) ) |
46 |
30 44 45
|
sylanbrc |
|- ( ph -> Y e. ( E \ { .0. } ) ) |
47 |
1 2 3 4 5 14 15 17 6 33 20 21 34 35 18 9 31 26 27 28 46
|
lcfrlem16 |
|- ( ph -> ( J ` Y ) e. G ) |
48 |
15 17 21 41 31 32 26 42 47
|
ldualssvscl |
|- ( ph -> ( ( ( F ` ( ( J ` Y ) ` I ) ) ( .r ` S ) ( ( J ` X ) ` I ) ) ( .s ` D ) ( J ` Y ) ) e. G ) |
49 |
21 24 31 32 26 40 48
|
ldualssvsubcl |
|- ( ph -> ( ( J ` X ) .- ( ( ( F ` ( ( J ` Y ) ` I ) ) ( .r ` S ) ( ( J ` X ) ` I ) ) ( .s ` D ) ( J ` Y ) ) ) e. G ) |
50 |
25 49
|
eqeltrid |
|- ( ph -> C e. G ) |
51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
|
lcfrlem36 |
|- ( ph -> ( X .+ Y ) e. ( ._|_ ` ( L ` C ) ) ) |
52 |
|
2fveq3 |
|- ( g = C -> ( ._|_ ` ( L ` g ) ) = ( ._|_ ` ( L ` C ) ) ) |
53 |
52
|
eleq2d |
|- ( g = C -> ( ( X .+ Y ) e. ( ._|_ ` ( L ` g ) ) <-> ( X .+ Y ) e. ( ._|_ ` ( L ` C ) ) ) ) |
54 |
53
|
rspcev |
|- ( ( C e. G /\ ( X .+ Y ) e. ( ._|_ ` ( L ` C ) ) ) -> E. g e. G ( X .+ Y ) e. ( ._|_ ` ( L ` g ) ) ) |
55 |
50 51 54
|
syl2anc |
|- ( ph -> E. g e. G ( X .+ Y ) e. ( ._|_ ` ( L ` g ) ) ) |
56 |
|
eliun |
|- ( ( X .+ Y ) e. U_ g e. G ( ._|_ ` ( L ` g ) ) <-> E. g e. G ( X .+ Y ) e. ( ._|_ ` ( L ` g ) ) ) |
57 |
55 56
|
sylibr |
|- ( ph -> ( X .+ Y ) e. U_ g e. G ( ._|_ ` ( L ` g ) ) ) |
58 |
57 28
|
eleqtrrdi |
|- ( ph -> ( X .+ Y ) e. E ) |