Step |
Hyp |
Ref |
Expression |
1 |
|
lcfrlem17.h |
|- H = ( LHyp ` K ) |
2 |
|
lcfrlem17.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
3 |
|
lcfrlem17.u |
|- U = ( ( DVecH ` K ) ` W ) |
4 |
|
lcfrlem17.v |
|- V = ( Base ` U ) |
5 |
|
lcfrlem17.p |
|- .+ = ( +g ` U ) |
6 |
|
lcfrlem17.z |
|- .0. = ( 0g ` U ) |
7 |
|
lcfrlem17.n |
|- N = ( LSpan ` U ) |
8 |
|
lcfrlem17.a |
|- A = ( LSAtoms ` U ) |
9 |
|
lcfrlem17.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
10 |
|
lcfrlem17.x |
|- ( ph -> X e. ( V \ { .0. } ) ) |
11 |
|
lcfrlem17.y |
|- ( ph -> Y e. ( V \ { .0. } ) ) |
12 |
|
lcfrlem17.ne |
|- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) |
13 |
|
lcfrlem22.b |
|- B = ( ( N ` { X , Y } ) i^i ( ._|_ ` { ( X .+ Y ) } ) ) |
14 |
|
lcfrlem24.t |
|- .x. = ( .s ` U ) |
15 |
|
lcfrlem24.s |
|- S = ( Scalar ` U ) |
16 |
|
lcfrlem24.q |
|- Q = ( 0g ` S ) |
17 |
|
lcfrlem24.r |
|- R = ( Base ` S ) |
18 |
|
lcfrlem24.j |
|- J = ( x e. ( V \ { .0. } ) |-> ( v e. V |-> ( iota_ k e. R E. w e. ( ._|_ ` { x } ) v = ( w .+ ( k .x. x ) ) ) ) ) |
19 |
|
lcfrlem24.ib |
|- ( ph -> I e. B ) |
20 |
|
lcfrlem24.l |
|- L = ( LKer ` U ) |
21 |
|
lcfrlem25.d |
|- D = ( LDual ` U ) |
22 |
|
lcfrlem28.jn |
|- ( ph -> ( ( J ` Y ) ` I ) =/= Q ) |
23 |
|
lcfrlem29.i |
|- F = ( invr ` S ) |
24 |
1 3 9
|
dvhlmod |
|- ( ph -> U e. LMod ) |
25 |
15
|
lmodring |
|- ( U e. LMod -> S e. Ring ) |
26 |
24 25
|
syl |
|- ( ph -> S e. Ring ) |
27 |
1 3 9
|
dvhlvec |
|- ( ph -> U e. LVec ) |
28 |
15
|
lvecdrng |
|- ( U e. LVec -> S e. DivRing ) |
29 |
27 28
|
syl |
|- ( ph -> S e. DivRing ) |
30 |
|
eqid |
|- ( LFnl ` U ) = ( LFnl ` U ) |
31 |
|
eqid |
|- ( 0g ` D ) = ( 0g ` D ) |
32 |
|
eqid |
|- { f e. ( LFnl ` U ) | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } = { f e. ( LFnl ` U ) | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } |
33 |
1 2 3 4 5 14 15 17 6 30 20 21 31 32 18 9 11
|
lcfrlem10 |
|- ( ph -> ( J ` Y ) e. ( LFnl ` U ) ) |
34 |
|
eqid |
|- ( LSubSp ` U ) = ( LSubSp ` U ) |
35 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
lcfrlem22 |
|- ( ph -> B e. A ) |
36 |
34 8 24 35
|
lsatlssel |
|- ( ph -> B e. ( LSubSp ` U ) ) |
37 |
4 34
|
lssel |
|- ( ( B e. ( LSubSp ` U ) /\ I e. B ) -> I e. V ) |
38 |
36 19 37
|
syl2anc |
|- ( ph -> I e. V ) |
39 |
15 17 4 30
|
lflcl |
|- ( ( U e. LMod /\ ( J ` Y ) e. ( LFnl ` U ) /\ I e. V ) -> ( ( J ` Y ) ` I ) e. R ) |
40 |
24 33 38 39
|
syl3anc |
|- ( ph -> ( ( J ` Y ) ` I ) e. R ) |
41 |
17 16 23
|
drnginvrcl |
|- ( ( S e. DivRing /\ ( ( J ` Y ) ` I ) e. R /\ ( ( J ` Y ) ` I ) =/= Q ) -> ( F ` ( ( J ` Y ) ` I ) ) e. R ) |
42 |
29 40 22 41
|
syl3anc |
|- ( ph -> ( F ` ( ( J ` Y ) ` I ) ) e. R ) |
43 |
1 2 3 4 5 14 15 17 6 30 20 21 31 32 18 9 10
|
lcfrlem10 |
|- ( ph -> ( J ` X ) e. ( LFnl ` U ) ) |
44 |
15 17 4 30
|
lflcl |
|- ( ( U e. LMod /\ ( J ` X ) e. ( LFnl ` U ) /\ I e. V ) -> ( ( J ` X ) ` I ) e. R ) |
45 |
24 43 38 44
|
syl3anc |
|- ( ph -> ( ( J ` X ) ` I ) e. R ) |
46 |
|
eqid |
|- ( .r ` S ) = ( .r ` S ) |
47 |
17 46
|
ringcl |
|- ( ( S e. Ring /\ ( F ` ( ( J ` Y ) ` I ) ) e. R /\ ( ( J ` X ) ` I ) e. R ) -> ( ( F ` ( ( J ` Y ) ` I ) ) ( .r ` S ) ( ( J ` X ) ` I ) ) e. R ) |
48 |
26 42 45 47
|
syl3anc |
|- ( ph -> ( ( F ` ( ( J ` Y ) ` I ) ) ( .r ` S ) ( ( J ` X ) ` I ) ) e. R ) |