Metamath Proof Explorer


Theorem lcfrlem29

Description: Lemma for lcfr . (Contributed by NM, 9-Mar-2015)

Ref Expression
Hypotheses lcfrlem17.h
|- H = ( LHyp ` K )
lcfrlem17.o
|- ._|_ = ( ( ocH ` K ) ` W )
lcfrlem17.u
|- U = ( ( DVecH ` K ) ` W )
lcfrlem17.v
|- V = ( Base ` U )
lcfrlem17.p
|- .+ = ( +g ` U )
lcfrlem17.z
|- .0. = ( 0g ` U )
lcfrlem17.n
|- N = ( LSpan ` U )
lcfrlem17.a
|- A = ( LSAtoms ` U )
lcfrlem17.k
|- ( ph -> ( K e. HL /\ W e. H ) )
lcfrlem17.x
|- ( ph -> X e. ( V \ { .0. } ) )
lcfrlem17.y
|- ( ph -> Y e. ( V \ { .0. } ) )
lcfrlem17.ne
|- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) )
lcfrlem22.b
|- B = ( ( N ` { X , Y } ) i^i ( ._|_ ` { ( X .+ Y ) } ) )
lcfrlem24.t
|- .x. = ( .s ` U )
lcfrlem24.s
|- S = ( Scalar ` U )
lcfrlem24.q
|- Q = ( 0g ` S )
lcfrlem24.r
|- R = ( Base ` S )
lcfrlem24.j
|- J = ( x e. ( V \ { .0. } ) |-> ( v e. V |-> ( iota_ k e. R E. w e. ( ._|_ ` { x } ) v = ( w .+ ( k .x. x ) ) ) ) )
lcfrlem24.ib
|- ( ph -> I e. B )
lcfrlem24.l
|- L = ( LKer ` U )
lcfrlem25.d
|- D = ( LDual ` U )
lcfrlem28.jn
|- ( ph -> ( ( J ` Y ) ` I ) =/= Q )
lcfrlem29.i
|- F = ( invr ` S )
Assertion lcfrlem29
|- ( ph -> ( ( F ` ( ( J ` Y ) ` I ) ) ( .r ` S ) ( ( J ` X ) ` I ) ) e. R )

Proof

Step Hyp Ref Expression
1 lcfrlem17.h
 |-  H = ( LHyp ` K )
2 lcfrlem17.o
 |-  ._|_ = ( ( ocH ` K ) ` W )
3 lcfrlem17.u
 |-  U = ( ( DVecH ` K ) ` W )
4 lcfrlem17.v
 |-  V = ( Base ` U )
5 lcfrlem17.p
 |-  .+ = ( +g ` U )
6 lcfrlem17.z
 |-  .0. = ( 0g ` U )
7 lcfrlem17.n
 |-  N = ( LSpan ` U )
8 lcfrlem17.a
 |-  A = ( LSAtoms ` U )
9 lcfrlem17.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
10 lcfrlem17.x
 |-  ( ph -> X e. ( V \ { .0. } ) )
11 lcfrlem17.y
 |-  ( ph -> Y e. ( V \ { .0. } ) )
12 lcfrlem17.ne
 |-  ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) )
13 lcfrlem22.b
 |-  B = ( ( N ` { X , Y } ) i^i ( ._|_ ` { ( X .+ Y ) } ) )
14 lcfrlem24.t
 |-  .x. = ( .s ` U )
15 lcfrlem24.s
 |-  S = ( Scalar ` U )
16 lcfrlem24.q
 |-  Q = ( 0g ` S )
17 lcfrlem24.r
 |-  R = ( Base ` S )
18 lcfrlem24.j
 |-  J = ( x e. ( V \ { .0. } ) |-> ( v e. V |-> ( iota_ k e. R E. w e. ( ._|_ ` { x } ) v = ( w .+ ( k .x. x ) ) ) ) )
19 lcfrlem24.ib
 |-  ( ph -> I e. B )
20 lcfrlem24.l
 |-  L = ( LKer ` U )
21 lcfrlem25.d
 |-  D = ( LDual ` U )
22 lcfrlem28.jn
 |-  ( ph -> ( ( J ` Y ) ` I ) =/= Q )
23 lcfrlem29.i
 |-  F = ( invr ` S )
24 1 3 9 dvhlmod
 |-  ( ph -> U e. LMod )
25 15 lmodring
 |-  ( U e. LMod -> S e. Ring )
26 24 25 syl
 |-  ( ph -> S e. Ring )
27 1 3 9 dvhlvec
 |-  ( ph -> U e. LVec )
28 15 lvecdrng
 |-  ( U e. LVec -> S e. DivRing )
29 27 28 syl
 |-  ( ph -> S e. DivRing )
30 eqid
 |-  ( LFnl ` U ) = ( LFnl ` U )
31 eqid
 |-  ( 0g ` D ) = ( 0g ` D )
32 eqid
 |-  { f e. ( LFnl ` U ) | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } = { f e. ( LFnl ` U ) | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) }
33 1 2 3 4 5 14 15 17 6 30 20 21 31 32 18 9 11 lcfrlem10
 |-  ( ph -> ( J ` Y ) e. ( LFnl ` U ) )
34 eqid
 |-  ( LSubSp ` U ) = ( LSubSp ` U )
35 1 2 3 4 5 6 7 8 9 10 11 12 13 lcfrlem22
 |-  ( ph -> B e. A )
36 34 8 24 35 lsatlssel
 |-  ( ph -> B e. ( LSubSp ` U ) )
37 4 34 lssel
 |-  ( ( B e. ( LSubSp ` U ) /\ I e. B ) -> I e. V )
38 36 19 37 syl2anc
 |-  ( ph -> I e. V )
39 15 17 4 30 lflcl
 |-  ( ( U e. LMod /\ ( J ` Y ) e. ( LFnl ` U ) /\ I e. V ) -> ( ( J ` Y ) ` I ) e. R )
40 24 33 38 39 syl3anc
 |-  ( ph -> ( ( J ` Y ) ` I ) e. R )
41 17 16 23 drnginvrcl
 |-  ( ( S e. DivRing /\ ( ( J ` Y ) ` I ) e. R /\ ( ( J ` Y ) ` I ) =/= Q ) -> ( F ` ( ( J ` Y ) ` I ) ) e. R )
42 29 40 22 41 syl3anc
 |-  ( ph -> ( F ` ( ( J ` Y ) ` I ) ) e. R )
43 1 2 3 4 5 14 15 17 6 30 20 21 31 32 18 9 10 lcfrlem10
 |-  ( ph -> ( J ` X ) e. ( LFnl ` U ) )
44 15 17 4 30 lflcl
 |-  ( ( U e. LMod /\ ( J ` X ) e. ( LFnl ` U ) /\ I e. V ) -> ( ( J ` X ) ` I ) e. R )
45 24 43 38 44 syl3anc
 |-  ( ph -> ( ( J ` X ) ` I ) e. R )
46 eqid
 |-  ( .r ` S ) = ( .r ` S )
47 17 46 ringcl
 |-  ( ( S e. Ring /\ ( F ` ( ( J ` Y ) ` I ) ) e. R /\ ( ( J ` X ) ` I ) e. R ) -> ( ( F ` ( ( J ` Y ) ` I ) ) ( .r ` S ) ( ( J ` X ) ` I ) ) e. R )
48 26 42 45 47 syl3anc
 |-  ( ph -> ( ( F ` ( ( J ` Y ) ` I ) ) ( .r ` S ) ( ( J ` X ) ` I ) ) e. R )