Metamath Proof Explorer


Theorem lcfrlem29

Description: Lemma for lcfr . (Contributed by NM, 9-Mar-2015)

Ref Expression
Hypotheses lcfrlem17.h H = LHyp K
lcfrlem17.o ˙ = ocH K W
lcfrlem17.u U = DVecH K W
lcfrlem17.v V = Base U
lcfrlem17.p + ˙ = + U
lcfrlem17.z 0 ˙ = 0 U
lcfrlem17.n N = LSpan U
lcfrlem17.a A = LSAtoms U
lcfrlem17.k φ K HL W H
lcfrlem17.x φ X V 0 ˙
lcfrlem17.y φ Y V 0 ˙
lcfrlem17.ne φ N X N Y
lcfrlem22.b B = N X Y ˙ X + ˙ Y
lcfrlem24.t · ˙ = U
lcfrlem24.s S = Scalar U
lcfrlem24.q Q = 0 S
lcfrlem24.r R = Base S
lcfrlem24.j J = x V 0 ˙ v V ι k R | w ˙ x v = w + ˙ k · ˙ x
lcfrlem24.ib φ I B
lcfrlem24.l L = LKer U
lcfrlem25.d D = LDual U
lcfrlem28.jn φ J Y I Q
lcfrlem29.i F = inv r S
Assertion lcfrlem29 φ F J Y I S J X I R

Proof

Step Hyp Ref Expression
1 lcfrlem17.h H = LHyp K
2 lcfrlem17.o ˙ = ocH K W
3 lcfrlem17.u U = DVecH K W
4 lcfrlem17.v V = Base U
5 lcfrlem17.p + ˙ = + U
6 lcfrlem17.z 0 ˙ = 0 U
7 lcfrlem17.n N = LSpan U
8 lcfrlem17.a A = LSAtoms U
9 lcfrlem17.k φ K HL W H
10 lcfrlem17.x φ X V 0 ˙
11 lcfrlem17.y φ Y V 0 ˙
12 lcfrlem17.ne φ N X N Y
13 lcfrlem22.b B = N X Y ˙ X + ˙ Y
14 lcfrlem24.t · ˙ = U
15 lcfrlem24.s S = Scalar U
16 lcfrlem24.q Q = 0 S
17 lcfrlem24.r R = Base S
18 lcfrlem24.j J = x V 0 ˙ v V ι k R | w ˙ x v = w + ˙ k · ˙ x
19 lcfrlem24.ib φ I B
20 lcfrlem24.l L = LKer U
21 lcfrlem25.d D = LDual U
22 lcfrlem28.jn φ J Y I Q
23 lcfrlem29.i F = inv r S
24 1 3 9 dvhlmod φ U LMod
25 15 lmodring U LMod S Ring
26 24 25 syl φ S Ring
27 1 3 9 dvhlvec φ U LVec
28 15 lvecdrng U LVec S DivRing
29 27 28 syl φ S DivRing
30 eqid LFnl U = LFnl U
31 eqid 0 D = 0 D
32 eqid f LFnl U | ˙ ˙ L f = L f = f LFnl U | ˙ ˙ L f = L f
33 1 2 3 4 5 14 15 17 6 30 20 21 31 32 18 9 11 lcfrlem10 φ J Y LFnl U
34 eqid LSubSp U = LSubSp U
35 1 2 3 4 5 6 7 8 9 10 11 12 13 lcfrlem22 φ B A
36 34 8 24 35 lsatlssel φ B LSubSp U
37 4 34 lssel B LSubSp U I B I V
38 36 19 37 syl2anc φ I V
39 15 17 4 30 lflcl U LMod J Y LFnl U I V J Y I R
40 24 33 38 39 syl3anc φ J Y I R
41 17 16 23 drnginvrcl S DivRing J Y I R J Y I Q F J Y I R
42 29 40 22 41 syl3anc φ F J Y I R
43 1 2 3 4 5 14 15 17 6 30 20 21 31 32 18 9 10 lcfrlem10 φ J X LFnl U
44 15 17 4 30 lflcl U LMod J X LFnl U I V J X I R
45 24 43 38 44 syl3anc φ J X I R
46 eqid S = S
47 17 46 ringcl S Ring F J Y I R J X I R F J Y I S J X I R
48 26 42 45 47 syl3anc φ F J Y I S J X I R