Step |
Hyp |
Ref |
Expression |
1 |
|
lcfrlem17.h |
|
2 |
|
lcfrlem17.o |
|
3 |
|
lcfrlem17.u |
|
4 |
|
lcfrlem17.v |
|
5 |
|
lcfrlem17.p |
|
6 |
|
lcfrlem17.z |
|
7 |
|
lcfrlem17.n |
|
8 |
|
lcfrlem17.a |
|
9 |
|
lcfrlem17.k |
|
10 |
|
lcfrlem17.x |
|
11 |
|
lcfrlem17.y |
|
12 |
|
lcfrlem17.ne |
|
13 |
|
lcfrlem22.b |
|
14 |
|
lcfrlem24.t |
|
15 |
|
lcfrlem24.s |
|
16 |
|
lcfrlem24.q |
|
17 |
|
lcfrlem24.r |
|
18 |
|
lcfrlem24.j |
|
19 |
|
lcfrlem24.ib |
|
20 |
|
lcfrlem24.l |
|
21 |
|
lcfrlem25.d |
|
22 |
|
lcfrlem28.jn |
|
23 |
|
lcfrlem29.i |
|
24 |
1 3 9
|
dvhlmod |
|
25 |
15
|
lmodring |
|
26 |
24 25
|
syl |
|
27 |
1 3 9
|
dvhlvec |
|
28 |
15
|
lvecdrng |
|
29 |
27 28
|
syl |
|
30 |
|
eqid |
|
31 |
|
eqid |
|
32 |
|
eqid |
|
33 |
1 2 3 4 5 14 15 17 6 30 20 21 31 32 18 9 11
|
lcfrlem10 |
|
34 |
|
eqid |
|
35 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
lcfrlem22 |
|
36 |
34 8 24 35
|
lsatlssel |
|
37 |
4 34
|
lssel |
|
38 |
36 19 37
|
syl2anc |
|
39 |
15 17 4 30
|
lflcl |
|
40 |
24 33 38 39
|
syl3anc |
|
41 |
17 16 23
|
drnginvrcl |
|
42 |
29 40 22 41
|
syl3anc |
|
43 |
1 2 3 4 5 14 15 17 6 30 20 21 31 32 18 9 10
|
lcfrlem10 |
|
44 |
15 17 4 30
|
lflcl |
|
45 |
24 43 38 44
|
syl3anc |
|
46 |
|
eqid |
|
47 |
17 46
|
ringcl |
|
48 |
26 42 45 47
|
syl3anc |
|