Step |
Hyp |
Ref |
Expression |
1 |
|
lcfrlem17.h |
|
2 |
|
lcfrlem17.o |
|
3 |
|
lcfrlem17.u |
|
4 |
|
lcfrlem17.v |
|
5 |
|
lcfrlem17.p |
|
6 |
|
lcfrlem17.z |
|
7 |
|
lcfrlem17.n |
|
8 |
|
lcfrlem17.a |
|
9 |
|
lcfrlem17.k |
|
10 |
|
lcfrlem17.x |
|
11 |
|
lcfrlem17.y |
|
12 |
|
lcfrlem17.ne |
|
13 |
|
lcfrlem22.b |
|
14 |
|
lcfrlem24.t |
|
15 |
|
lcfrlem24.s |
|
16 |
|
lcfrlem24.q |
|
17 |
|
lcfrlem24.r |
|
18 |
|
lcfrlem24.j |
|
19 |
|
lcfrlem24.ib |
|
20 |
|
lcfrlem24.l |
|
21 |
|
lcfrlem25.d |
|
22 |
|
lcfrlem28.jn |
|
23 |
|
lcfrlem29.i |
|
24 |
|
lcfrlem30.m |
|
25 |
|
lcfrlem30.c |
|
26 |
|
eqid |
|
27 |
1 3 9
|
dvhlmod |
|
28 |
|
eqid |
|
29 |
|
eqid |
|
30 |
1 2 3 4 5 14 15 17 6 26 20 21 28 29 18 9 10
|
lcfrlem10 |
|
31 |
|
eqid |
|
32 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
|
lcfrlem29 |
|
33 |
1 2 3 4 5 14 15 17 6 26 20 21 28 29 18 9 11
|
lcfrlem10 |
|
34 |
26 15 17 21 31 27 32 33
|
ldualvscl |
|
35 |
26 21 24 27 30 34
|
ldualvsubcl |
|
36 |
25 35
|
eqeltrid |
|