Step |
Hyp |
Ref |
Expression |
1 |
|
lcfrlem17.h |
|
2 |
|
lcfrlem17.o |
|
3 |
|
lcfrlem17.u |
|
4 |
|
lcfrlem17.v |
|
5 |
|
lcfrlem17.p |
|
6 |
|
lcfrlem17.z |
|
7 |
|
lcfrlem17.n |
|
8 |
|
lcfrlem17.a |
|
9 |
|
lcfrlem17.k |
|
10 |
|
lcfrlem17.x |
|
11 |
|
lcfrlem17.y |
|
12 |
|
lcfrlem17.ne |
|
13 |
|
lcfrlem22.b |
|
14 |
|
lcfrlem24.t |
|
15 |
|
lcfrlem24.s |
|
16 |
|
lcfrlem24.q |
|
17 |
|
lcfrlem24.r |
|
18 |
|
lcfrlem24.j |
|
19 |
|
lcfrlem24.ib |
|
20 |
|
lcfrlem24.l |
|
21 |
|
lcfrlem25.d |
|
22 |
|
lcfrlem28.jn |
|
23 |
|
lcfrlem29.i |
|
24 |
|
lcfrlem30.m |
|
25 |
|
lcfrlem30.c |
|
26 |
|
lcfrlem31.xi |
|
27 |
|
lcfrlem31.cn |
|
28 |
25 27
|
eqtr3id |
|
29 |
1 3 9
|
dvhlmod |
|
30 |
21 29
|
lduallmod |
|
31 |
|
eqid |
|
32 |
|
eqid |
|
33 |
|
eqid |
|
34 |
|
eqid |
|
35 |
1 2 3 4 5 14 15 17 6 31 20 21 33 34 18 9 10
|
lcfrlem10 |
|
36 |
31 21 32 29 35
|
ldualelvbase |
|
37 |
|
eqid |
|
38 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
|
lcfrlem29 |
|
39 |
1 2 3 4 5 14 15 17 6 31 20 21 33 34 18 9 11
|
lcfrlem10 |
|
40 |
31 15 17 21 37 29 38 39
|
ldualvscl |
|
41 |
31 21 32 29 40
|
ldualelvbase |
|
42 |
32 33 24
|
lmodsubeq0 |
|
43 |
30 36 41 42
|
syl3anc |
|
44 |
28 43
|
mpbid |
|
45 |
44
|
fveq2d |
|
46 |
1 3 9
|
dvhlvec |
|
47 |
15
|
lvecdrng |
|
48 |
46 47
|
syl |
|
49 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
lcfrlem22 |
|
50 |
4 8 29 49
|
lsatssv |
|
51 |
50 19
|
sseldd |
|
52 |
15 17 4 31
|
lflcl |
|
53 |
29 39 51 52
|
syl3anc |
|
54 |
17 16 23
|
drnginvrn0 |
|
55 |
48 53 22 54
|
syl3anc |
|
56 |
|
eqid |
|
57 |
17 16 23
|
drnginvrcl |
|
58 |
48 53 22 57
|
syl3anc |
|
59 |
15 17 4 31
|
lflcl |
|
60 |
29 35 51 59
|
syl3anc |
|
61 |
17 16 56 48 58 60
|
drngmulne0 |
|
62 |
55 26 61
|
mpbir2and |
|
63 |
15 17 16 31 20 21 37 46 39 38 62
|
ldualkrsc |
|
64 |
45 63
|
eqtrd |
|
65 |
64
|
fveq2d |
|
66 |
1 2 3 4 5 14 15 17 6 31 20 21 33 34 18 9 10 7
|
lcfrlem14 |
|
67 |
1 2 3 4 5 14 15 17 6 31 20 21 33 34 18 9 11 7
|
lcfrlem14 |
|
68 |
65 66 67
|
3eqtr3d |
|