| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcfrlem17.h |
|
| 2 |
|
lcfrlem17.o |
|
| 3 |
|
lcfrlem17.u |
|
| 4 |
|
lcfrlem17.v |
|
| 5 |
|
lcfrlem17.p |
|
| 6 |
|
lcfrlem17.z |
|
| 7 |
|
lcfrlem17.n |
|
| 8 |
|
lcfrlem17.a |
|
| 9 |
|
lcfrlem17.k |
|
| 10 |
|
lcfrlem17.x |
|
| 11 |
|
lcfrlem17.y |
|
| 12 |
|
lcfrlem17.ne |
|
| 13 |
|
lcfrlem22.b |
|
| 14 |
|
lcfrlem24.t |
|
| 15 |
|
lcfrlem24.s |
|
| 16 |
|
lcfrlem24.q |
|
| 17 |
|
lcfrlem24.r |
|
| 18 |
|
lcfrlem24.j |
|
| 19 |
|
lcfrlem24.ib |
|
| 20 |
|
lcfrlem24.l |
|
| 21 |
|
lcfrlem25.d |
|
| 22 |
|
lcfrlem28.jn |
|
| 23 |
|
lcfrlem29.i |
|
| 24 |
|
lcfrlem30.m |
|
| 25 |
|
lcfrlem30.c |
|
| 26 |
|
lcfrlem31.xi |
|
| 27 |
|
lcfrlem31.cn |
|
| 28 |
25 27
|
eqtr3id |
|
| 29 |
1 3 9
|
dvhlmod |
|
| 30 |
21 29
|
lduallmod |
|
| 31 |
|
eqid |
|
| 32 |
|
eqid |
|
| 33 |
|
eqid |
|
| 34 |
|
eqid |
|
| 35 |
1 2 3 4 5 14 15 17 6 31 20 21 33 34 18 9 10
|
lcfrlem10 |
|
| 36 |
31 21 32 29 35
|
ldualelvbase |
|
| 37 |
|
eqid |
|
| 38 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
|
lcfrlem29 |
|
| 39 |
1 2 3 4 5 14 15 17 6 31 20 21 33 34 18 9 11
|
lcfrlem10 |
|
| 40 |
31 15 17 21 37 29 38 39
|
ldualvscl |
|
| 41 |
31 21 32 29 40
|
ldualelvbase |
|
| 42 |
32 33 24
|
lmodsubeq0 |
|
| 43 |
30 36 41 42
|
syl3anc |
|
| 44 |
28 43
|
mpbid |
|
| 45 |
44
|
fveq2d |
|
| 46 |
1 3 9
|
dvhlvec |
|
| 47 |
15
|
lvecdrng |
|
| 48 |
46 47
|
syl |
|
| 49 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
lcfrlem22 |
|
| 50 |
4 8 29 49
|
lsatssv |
|
| 51 |
50 19
|
sseldd |
|
| 52 |
15 17 4 31
|
lflcl |
|
| 53 |
29 39 51 52
|
syl3anc |
|
| 54 |
17 16 23
|
drnginvrn0 |
|
| 55 |
48 53 22 54
|
syl3anc |
|
| 56 |
|
eqid |
|
| 57 |
17 16 23
|
drnginvrcl |
|
| 58 |
48 53 22 57
|
syl3anc |
|
| 59 |
15 17 4 31
|
lflcl |
|
| 60 |
29 35 51 59
|
syl3anc |
|
| 61 |
17 16 56 48 58 60
|
drngmulne0 |
|
| 62 |
55 26 61
|
mpbir2and |
|
| 63 |
15 17 16 31 20 21 37 46 39 38 62
|
ldualkrsc |
|
| 64 |
45 63
|
eqtrd |
|
| 65 |
64
|
fveq2d |
|
| 66 |
1 2 3 4 5 14 15 17 6 31 20 21 33 34 18 9 10 7
|
lcfrlem14 |
|
| 67 |
1 2 3 4 5 14 15 17 6 31 20 21 33 34 18 9 11 7
|
lcfrlem14 |
|
| 68 |
65 66 67
|
3eqtr3d |
|