Step |
Hyp |
Ref |
Expression |
1 |
|
lcfrlem17.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
lcfrlem17.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
lcfrlem17.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
lcfrlem17.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
5 |
|
lcfrlem17.p |
⊢ + = ( +g ‘ 𝑈 ) |
6 |
|
lcfrlem17.z |
⊢ 0 = ( 0g ‘ 𝑈 ) |
7 |
|
lcfrlem17.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
8 |
|
lcfrlem17.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑈 ) |
9 |
|
lcfrlem17.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
10 |
|
lcfrlem17.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
11 |
|
lcfrlem17.y |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) |
12 |
|
lcfrlem17.ne |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |
13 |
|
lcfrlem22.b |
⊢ 𝐵 = ( ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∩ ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) ) |
14 |
|
lcfrlem24.t |
⊢ · = ( ·𝑠 ‘ 𝑈 ) |
15 |
|
lcfrlem24.s |
⊢ 𝑆 = ( Scalar ‘ 𝑈 ) |
16 |
|
lcfrlem24.q |
⊢ 𝑄 = ( 0g ‘ 𝑆 ) |
17 |
|
lcfrlem24.r |
⊢ 𝑅 = ( Base ‘ 𝑆 ) |
18 |
|
lcfrlem24.j |
⊢ 𝐽 = ( 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ↦ ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑥 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑥 ) ) ) ) ) |
19 |
|
lcfrlem24.ib |
⊢ ( 𝜑 → 𝐼 ∈ 𝐵 ) |
20 |
|
lcfrlem24.l |
⊢ 𝐿 = ( LKer ‘ 𝑈 ) |
21 |
|
lcfrlem25.d |
⊢ 𝐷 = ( LDual ‘ 𝑈 ) |
22 |
|
lcfrlem28.jn |
⊢ ( 𝜑 → ( ( 𝐽 ‘ 𝑌 ) ‘ 𝐼 ) ≠ 𝑄 ) |
23 |
|
lcfrlem29.i |
⊢ 𝐹 = ( invr ‘ 𝑆 ) |
24 |
|
lcfrlem30.m |
⊢ − = ( -g ‘ 𝐷 ) |
25 |
|
lcfrlem30.c |
⊢ 𝐶 = ( ( 𝐽 ‘ 𝑋 ) − ( ( ( 𝐹 ‘ ( ( 𝐽 ‘ 𝑌 ) ‘ 𝐼 ) ) ( .r ‘ 𝑆 ) ( ( 𝐽 ‘ 𝑋 ) ‘ 𝐼 ) ) ( ·𝑠 ‘ 𝐷 ) ( 𝐽 ‘ 𝑌 ) ) ) |
26 |
|
lcfrlem31.xi |
⊢ ( 𝜑 → ( ( 𝐽 ‘ 𝑋 ) ‘ 𝐼 ) ≠ 𝑄 ) |
27 |
|
lcfrlem31.cn |
⊢ ( 𝜑 → 𝐶 = ( 0g ‘ 𝐷 ) ) |
28 |
25 27
|
eqtr3id |
⊢ ( 𝜑 → ( ( 𝐽 ‘ 𝑋 ) − ( ( ( 𝐹 ‘ ( ( 𝐽 ‘ 𝑌 ) ‘ 𝐼 ) ) ( .r ‘ 𝑆 ) ( ( 𝐽 ‘ 𝑋 ) ‘ 𝐼 ) ) ( ·𝑠 ‘ 𝐷 ) ( 𝐽 ‘ 𝑌 ) ) ) = ( 0g ‘ 𝐷 ) ) |
29 |
1 3 9
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
30 |
21 29
|
lduallmod |
⊢ ( 𝜑 → 𝐷 ∈ LMod ) |
31 |
|
eqid |
⊢ ( LFnl ‘ 𝑈 ) = ( LFnl ‘ 𝑈 ) |
32 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
33 |
|
eqid |
⊢ ( 0g ‘ 𝐷 ) = ( 0g ‘ 𝐷 ) |
34 |
|
eqid |
⊢ { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) } = { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) } |
35 |
1 2 3 4 5 14 15 17 6 31 20 21 33 34 18 9 10
|
lcfrlem10 |
⊢ ( 𝜑 → ( 𝐽 ‘ 𝑋 ) ∈ ( LFnl ‘ 𝑈 ) ) |
36 |
31 21 32 29 35
|
ldualelvbase |
⊢ ( 𝜑 → ( 𝐽 ‘ 𝑋 ) ∈ ( Base ‘ 𝐷 ) ) |
37 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝐷 ) = ( ·𝑠 ‘ 𝐷 ) |
38 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
|
lcfrlem29 |
⊢ ( 𝜑 → ( ( 𝐹 ‘ ( ( 𝐽 ‘ 𝑌 ) ‘ 𝐼 ) ) ( .r ‘ 𝑆 ) ( ( 𝐽 ‘ 𝑋 ) ‘ 𝐼 ) ) ∈ 𝑅 ) |
39 |
1 2 3 4 5 14 15 17 6 31 20 21 33 34 18 9 11
|
lcfrlem10 |
⊢ ( 𝜑 → ( 𝐽 ‘ 𝑌 ) ∈ ( LFnl ‘ 𝑈 ) ) |
40 |
31 15 17 21 37 29 38 39
|
ldualvscl |
⊢ ( 𝜑 → ( ( ( 𝐹 ‘ ( ( 𝐽 ‘ 𝑌 ) ‘ 𝐼 ) ) ( .r ‘ 𝑆 ) ( ( 𝐽 ‘ 𝑋 ) ‘ 𝐼 ) ) ( ·𝑠 ‘ 𝐷 ) ( 𝐽 ‘ 𝑌 ) ) ∈ ( LFnl ‘ 𝑈 ) ) |
41 |
31 21 32 29 40
|
ldualelvbase |
⊢ ( 𝜑 → ( ( ( 𝐹 ‘ ( ( 𝐽 ‘ 𝑌 ) ‘ 𝐼 ) ) ( .r ‘ 𝑆 ) ( ( 𝐽 ‘ 𝑋 ) ‘ 𝐼 ) ) ( ·𝑠 ‘ 𝐷 ) ( 𝐽 ‘ 𝑌 ) ) ∈ ( Base ‘ 𝐷 ) ) |
42 |
32 33 24
|
lmodsubeq0 |
⊢ ( ( 𝐷 ∈ LMod ∧ ( 𝐽 ‘ 𝑋 ) ∈ ( Base ‘ 𝐷 ) ∧ ( ( ( 𝐹 ‘ ( ( 𝐽 ‘ 𝑌 ) ‘ 𝐼 ) ) ( .r ‘ 𝑆 ) ( ( 𝐽 ‘ 𝑋 ) ‘ 𝐼 ) ) ( ·𝑠 ‘ 𝐷 ) ( 𝐽 ‘ 𝑌 ) ) ∈ ( Base ‘ 𝐷 ) ) → ( ( ( 𝐽 ‘ 𝑋 ) − ( ( ( 𝐹 ‘ ( ( 𝐽 ‘ 𝑌 ) ‘ 𝐼 ) ) ( .r ‘ 𝑆 ) ( ( 𝐽 ‘ 𝑋 ) ‘ 𝐼 ) ) ( ·𝑠 ‘ 𝐷 ) ( 𝐽 ‘ 𝑌 ) ) ) = ( 0g ‘ 𝐷 ) ↔ ( 𝐽 ‘ 𝑋 ) = ( ( ( 𝐹 ‘ ( ( 𝐽 ‘ 𝑌 ) ‘ 𝐼 ) ) ( .r ‘ 𝑆 ) ( ( 𝐽 ‘ 𝑋 ) ‘ 𝐼 ) ) ( ·𝑠 ‘ 𝐷 ) ( 𝐽 ‘ 𝑌 ) ) ) ) |
43 |
30 36 41 42
|
syl3anc |
⊢ ( 𝜑 → ( ( ( 𝐽 ‘ 𝑋 ) − ( ( ( 𝐹 ‘ ( ( 𝐽 ‘ 𝑌 ) ‘ 𝐼 ) ) ( .r ‘ 𝑆 ) ( ( 𝐽 ‘ 𝑋 ) ‘ 𝐼 ) ) ( ·𝑠 ‘ 𝐷 ) ( 𝐽 ‘ 𝑌 ) ) ) = ( 0g ‘ 𝐷 ) ↔ ( 𝐽 ‘ 𝑋 ) = ( ( ( 𝐹 ‘ ( ( 𝐽 ‘ 𝑌 ) ‘ 𝐼 ) ) ( .r ‘ 𝑆 ) ( ( 𝐽 ‘ 𝑋 ) ‘ 𝐼 ) ) ( ·𝑠 ‘ 𝐷 ) ( 𝐽 ‘ 𝑌 ) ) ) ) |
44 |
28 43
|
mpbid |
⊢ ( 𝜑 → ( 𝐽 ‘ 𝑋 ) = ( ( ( 𝐹 ‘ ( ( 𝐽 ‘ 𝑌 ) ‘ 𝐼 ) ) ( .r ‘ 𝑆 ) ( ( 𝐽 ‘ 𝑋 ) ‘ 𝐼 ) ) ( ·𝑠 ‘ 𝐷 ) ( 𝐽 ‘ 𝑌 ) ) ) |
45 |
44
|
fveq2d |
⊢ ( 𝜑 → ( 𝐿 ‘ ( 𝐽 ‘ 𝑋 ) ) = ( 𝐿 ‘ ( ( ( 𝐹 ‘ ( ( 𝐽 ‘ 𝑌 ) ‘ 𝐼 ) ) ( .r ‘ 𝑆 ) ( ( 𝐽 ‘ 𝑋 ) ‘ 𝐼 ) ) ( ·𝑠 ‘ 𝐷 ) ( 𝐽 ‘ 𝑌 ) ) ) ) |
46 |
1 3 9
|
dvhlvec |
⊢ ( 𝜑 → 𝑈 ∈ LVec ) |
47 |
15
|
lvecdrng |
⊢ ( 𝑈 ∈ LVec → 𝑆 ∈ DivRing ) |
48 |
46 47
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ DivRing ) |
49 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
lcfrlem22 |
⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) |
50 |
4 8 29 49
|
lsatssv |
⊢ ( 𝜑 → 𝐵 ⊆ 𝑉 ) |
51 |
50 19
|
sseldd |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
52 |
15 17 4 31
|
lflcl |
⊢ ( ( 𝑈 ∈ LMod ∧ ( 𝐽 ‘ 𝑌 ) ∈ ( LFnl ‘ 𝑈 ) ∧ 𝐼 ∈ 𝑉 ) → ( ( 𝐽 ‘ 𝑌 ) ‘ 𝐼 ) ∈ 𝑅 ) |
53 |
29 39 51 52
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐽 ‘ 𝑌 ) ‘ 𝐼 ) ∈ 𝑅 ) |
54 |
17 16 23
|
drnginvrn0 |
⊢ ( ( 𝑆 ∈ DivRing ∧ ( ( 𝐽 ‘ 𝑌 ) ‘ 𝐼 ) ∈ 𝑅 ∧ ( ( 𝐽 ‘ 𝑌 ) ‘ 𝐼 ) ≠ 𝑄 ) → ( 𝐹 ‘ ( ( 𝐽 ‘ 𝑌 ) ‘ 𝐼 ) ) ≠ 𝑄 ) |
55 |
48 53 22 54
|
syl3anc |
⊢ ( 𝜑 → ( 𝐹 ‘ ( ( 𝐽 ‘ 𝑌 ) ‘ 𝐼 ) ) ≠ 𝑄 ) |
56 |
|
eqid |
⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) |
57 |
17 16 23
|
drnginvrcl |
⊢ ( ( 𝑆 ∈ DivRing ∧ ( ( 𝐽 ‘ 𝑌 ) ‘ 𝐼 ) ∈ 𝑅 ∧ ( ( 𝐽 ‘ 𝑌 ) ‘ 𝐼 ) ≠ 𝑄 ) → ( 𝐹 ‘ ( ( 𝐽 ‘ 𝑌 ) ‘ 𝐼 ) ) ∈ 𝑅 ) |
58 |
48 53 22 57
|
syl3anc |
⊢ ( 𝜑 → ( 𝐹 ‘ ( ( 𝐽 ‘ 𝑌 ) ‘ 𝐼 ) ) ∈ 𝑅 ) |
59 |
15 17 4 31
|
lflcl |
⊢ ( ( 𝑈 ∈ LMod ∧ ( 𝐽 ‘ 𝑋 ) ∈ ( LFnl ‘ 𝑈 ) ∧ 𝐼 ∈ 𝑉 ) → ( ( 𝐽 ‘ 𝑋 ) ‘ 𝐼 ) ∈ 𝑅 ) |
60 |
29 35 51 59
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐽 ‘ 𝑋 ) ‘ 𝐼 ) ∈ 𝑅 ) |
61 |
17 16 56 48 58 60
|
drngmulne0 |
⊢ ( 𝜑 → ( ( ( 𝐹 ‘ ( ( 𝐽 ‘ 𝑌 ) ‘ 𝐼 ) ) ( .r ‘ 𝑆 ) ( ( 𝐽 ‘ 𝑋 ) ‘ 𝐼 ) ) ≠ 𝑄 ↔ ( ( 𝐹 ‘ ( ( 𝐽 ‘ 𝑌 ) ‘ 𝐼 ) ) ≠ 𝑄 ∧ ( ( 𝐽 ‘ 𝑋 ) ‘ 𝐼 ) ≠ 𝑄 ) ) ) |
62 |
55 26 61
|
mpbir2and |
⊢ ( 𝜑 → ( ( 𝐹 ‘ ( ( 𝐽 ‘ 𝑌 ) ‘ 𝐼 ) ) ( .r ‘ 𝑆 ) ( ( 𝐽 ‘ 𝑋 ) ‘ 𝐼 ) ) ≠ 𝑄 ) |
63 |
15 17 16 31 20 21 37 46 39 38 62
|
ldualkrsc |
⊢ ( 𝜑 → ( 𝐿 ‘ ( ( ( 𝐹 ‘ ( ( 𝐽 ‘ 𝑌 ) ‘ 𝐼 ) ) ( .r ‘ 𝑆 ) ( ( 𝐽 ‘ 𝑋 ) ‘ 𝐼 ) ) ( ·𝑠 ‘ 𝐷 ) ( 𝐽 ‘ 𝑌 ) ) ) = ( 𝐿 ‘ ( 𝐽 ‘ 𝑌 ) ) ) |
64 |
45 63
|
eqtrd |
⊢ ( 𝜑 → ( 𝐿 ‘ ( 𝐽 ‘ 𝑋 ) ) = ( 𝐿 ‘ ( 𝐽 ‘ 𝑌 ) ) ) |
65 |
64
|
fveq2d |
⊢ ( 𝜑 → ( ⊥ ‘ ( 𝐿 ‘ ( 𝐽 ‘ 𝑋 ) ) ) = ( ⊥ ‘ ( 𝐿 ‘ ( 𝐽 ‘ 𝑌 ) ) ) ) |
66 |
1 2 3 4 5 14 15 17 6 31 20 21 33 34 18 9 10 7
|
lcfrlem14 |
⊢ ( 𝜑 → ( ⊥ ‘ ( 𝐿 ‘ ( 𝐽 ‘ 𝑋 ) ) ) = ( 𝑁 ‘ { 𝑋 } ) ) |
67 |
1 2 3 4 5 14 15 17 6 31 20 21 33 34 18 9 11 7
|
lcfrlem14 |
⊢ ( 𝜑 → ( ⊥ ‘ ( 𝐿 ‘ ( 𝐽 ‘ 𝑌 ) ) ) = ( 𝑁 ‘ { 𝑌 } ) ) |
68 |
65 66 67
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) |