Metamath Proof Explorer


Theorem lcfrlem31

Description: Lemma for lcfr . (Contributed by NM, 10-Mar-2015)

Ref Expression
Hypotheses lcfrlem17.h 𝐻 = ( LHyp ‘ 𝐾 )
lcfrlem17.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
lcfrlem17.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
lcfrlem17.v 𝑉 = ( Base ‘ 𝑈 )
lcfrlem17.p + = ( +g𝑈 )
lcfrlem17.z 0 = ( 0g𝑈 )
lcfrlem17.n 𝑁 = ( LSpan ‘ 𝑈 )
lcfrlem17.a 𝐴 = ( LSAtoms ‘ 𝑈 )
lcfrlem17.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
lcfrlem17.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
lcfrlem17.y ( 𝜑𝑌 ∈ ( 𝑉 ∖ { 0 } ) )
lcfrlem17.ne ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) )
lcfrlem22.b 𝐵 = ( ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∩ ( ‘ { ( 𝑋 + 𝑌 ) } ) )
lcfrlem24.t · = ( ·𝑠𝑈 )
lcfrlem24.s 𝑆 = ( Scalar ‘ 𝑈 )
lcfrlem24.q 𝑄 = ( 0g𝑆 )
lcfrlem24.r 𝑅 = ( Base ‘ 𝑆 )
lcfrlem24.j 𝐽 = ( 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ↦ ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑥 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑥 ) ) ) ) )
lcfrlem24.ib ( 𝜑𝐼𝐵 )
lcfrlem24.l 𝐿 = ( LKer ‘ 𝑈 )
lcfrlem25.d 𝐷 = ( LDual ‘ 𝑈 )
lcfrlem28.jn ( 𝜑 → ( ( 𝐽𝑌 ) ‘ 𝐼 ) ≠ 𝑄 )
lcfrlem29.i 𝐹 = ( invr𝑆 )
lcfrlem30.m = ( -g𝐷 )
lcfrlem30.c 𝐶 = ( ( 𝐽𝑋 ) ( ( ( 𝐹 ‘ ( ( 𝐽𝑌 ) ‘ 𝐼 ) ) ( .r𝑆 ) ( ( 𝐽𝑋 ) ‘ 𝐼 ) ) ( ·𝑠𝐷 ) ( 𝐽𝑌 ) ) )
lcfrlem31.xi ( 𝜑 → ( ( 𝐽𝑋 ) ‘ 𝐼 ) ≠ 𝑄 )
lcfrlem31.cn ( 𝜑𝐶 = ( 0g𝐷 ) )
Assertion lcfrlem31 ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) )

Proof

Step Hyp Ref Expression
1 lcfrlem17.h 𝐻 = ( LHyp ‘ 𝐾 )
2 lcfrlem17.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
3 lcfrlem17.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
4 lcfrlem17.v 𝑉 = ( Base ‘ 𝑈 )
5 lcfrlem17.p + = ( +g𝑈 )
6 lcfrlem17.z 0 = ( 0g𝑈 )
7 lcfrlem17.n 𝑁 = ( LSpan ‘ 𝑈 )
8 lcfrlem17.a 𝐴 = ( LSAtoms ‘ 𝑈 )
9 lcfrlem17.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
10 lcfrlem17.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
11 lcfrlem17.y ( 𝜑𝑌 ∈ ( 𝑉 ∖ { 0 } ) )
12 lcfrlem17.ne ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) )
13 lcfrlem22.b 𝐵 = ( ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∩ ( ‘ { ( 𝑋 + 𝑌 ) } ) )
14 lcfrlem24.t · = ( ·𝑠𝑈 )
15 lcfrlem24.s 𝑆 = ( Scalar ‘ 𝑈 )
16 lcfrlem24.q 𝑄 = ( 0g𝑆 )
17 lcfrlem24.r 𝑅 = ( Base ‘ 𝑆 )
18 lcfrlem24.j 𝐽 = ( 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ↦ ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑥 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑥 ) ) ) ) )
19 lcfrlem24.ib ( 𝜑𝐼𝐵 )
20 lcfrlem24.l 𝐿 = ( LKer ‘ 𝑈 )
21 lcfrlem25.d 𝐷 = ( LDual ‘ 𝑈 )
22 lcfrlem28.jn ( 𝜑 → ( ( 𝐽𝑌 ) ‘ 𝐼 ) ≠ 𝑄 )
23 lcfrlem29.i 𝐹 = ( invr𝑆 )
24 lcfrlem30.m = ( -g𝐷 )
25 lcfrlem30.c 𝐶 = ( ( 𝐽𝑋 ) ( ( ( 𝐹 ‘ ( ( 𝐽𝑌 ) ‘ 𝐼 ) ) ( .r𝑆 ) ( ( 𝐽𝑋 ) ‘ 𝐼 ) ) ( ·𝑠𝐷 ) ( 𝐽𝑌 ) ) )
26 lcfrlem31.xi ( 𝜑 → ( ( 𝐽𝑋 ) ‘ 𝐼 ) ≠ 𝑄 )
27 lcfrlem31.cn ( 𝜑𝐶 = ( 0g𝐷 ) )
28 25 27 syl5eqr ( 𝜑 → ( ( 𝐽𝑋 ) ( ( ( 𝐹 ‘ ( ( 𝐽𝑌 ) ‘ 𝐼 ) ) ( .r𝑆 ) ( ( 𝐽𝑋 ) ‘ 𝐼 ) ) ( ·𝑠𝐷 ) ( 𝐽𝑌 ) ) ) = ( 0g𝐷 ) )
29 1 3 9 dvhlmod ( 𝜑𝑈 ∈ LMod )
30 21 29 lduallmod ( 𝜑𝐷 ∈ LMod )
31 eqid ( LFnl ‘ 𝑈 ) = ( LFnl ‘ 𝑈 )
32 eqid ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 )
33 eqid ( 0g𝐷 ) = ( 0g𝐷 )
34 eqid { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ‘ ( ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) } = { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ‘ ( ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) }
35 1 2 3 4 5 14 15 17 6 31 20 21 33 34 18 9 10 lcfrlem10 ( 𝜑 → ( 𝐽𝑋 ) ∈ ( LFnl ‘ 𝑈 ) )
36 31 21 32 29 35 ldualelvbase ( 𝜑 → ( 𝐽𝑋 ) ∈ ( Base ‘ 𝐷 ) )
37 eqid ( ·𝑠𝐷 ) = ( ·𝑠𝐷 )
38 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 lcfrlem29 ( 𝜑 → ( ( 𝐹 ‘ ( ( 𝐽𝑌 ) ‘ 𝐼 ) ) ( .r𝑆 ) ( ( 𝐽𝑋 ) ‘ 𝐼 ) ) ∈ 𝑅 )
39 1 2 3 4 5 14 15 17 6 31 20 21 33 34 18 9 11 lcfrlem10 ( 𝜑 → ( 𝐽𝑌 ) ∈ ( LFnl ‘ 𝑈 ) )
40 31 15 17 21 37 29 38 39 ldualvscl ( 𝜑 → ( ( ( 𝐹 ‘ ( ( 𝐽𝑌 ) ‘ 𝐼 ) ) ( .r𝑆 ) ( ( 𝐽𝑋 ) ‘ 𝐼 ) ) ( ·𝑠𝐷 ) ( 𝐽𝑌 ) ) ∈ ( LFnl ‘ 𝑈 ) )
41 31 21 32 29 40 ldualelvbase ( 𝜑 → ( ( ( 𝐹 ‘ ( ( 𝐽𝑌 ) ‘ 𝐼 ) ) ( .r𝑆 ) ( ( 𝐽𝑋 ) ‘ 𝐼 ) ) ( ·𝑠𝐷 ) ( 𝐽𝑌 ) ) ∈ ( Base ‘ 𝐷 ) )
42 32 33 24 lmodsubeq0 ( ( 𝐷 ∈ LMod ∧ ( 𝐽𝑋 ) ∈ ( Base ‘ 𝐷 ) ∧ ( ( ( 𝐹 ‘ ( ( 𝐽𝑌 ) ‘ 𝐼 ) ) ( .r𝑆 ) ( ( 𝐽𝑋 ) ‘ 𝐼 ) ) ( ·𝑠𝐷 ) ( 𝐽𝑌 ) ) ∈ ( Base ‘ 𝐷 ) ) → ( ( ( 𝐽𝑋 ) ( ( ( 𝐹 ‘ ( ( 𝐽𝑌 ) ‘ 𝐼 ) ) ( .r𝑆 ) ( ( 𝐽𝑋 ) ‘ 𝐼 ) ) ( ·𝑠𝐷 ) ( 𝐽𝑌 ) ) ) = ( 0g𝐷 ) ↔ ( 𝐽𝑋 ) = ( ( ( 𝐹 ‘ ( ( 𝐽𝑌 ) ‘ 𝐼 ) ) ( .r𝑆 ) ( ( 𝐽𝑋 ) ‘ 𝐼 ) ) ( ·𝑠𝐷 ) ( 𝐽𝑌 ) ) ) )
43 30 36 41 42 syl3anc ( 𝜑 → ( ( ( 𝐽𝑋 ) ( ( ( 𝐹 ‘ ( ( 𝐽𝑌 ) ‘ 𝐼 ) ) ( .r𝑆 ) ( ( 𝐽𝑋 ) ‘ 𝐼 ) ) ( ·𝑠𝐷 ) ( 𝐽𝑌 ) ) ) = ( 0g𝐷 ) ↔ ( 𝐽𝑋 ) = ( ( ( 𝐹 ‘ ( ( 𝐽𝑌 ) ‘ 𝐼 ) ) ( .r𝑆 ) ( ( 𝐽𝑋 ) ‘ 𝐼 ) ) ( ·𝑠𝐷 ) ( 𝐽𝑌 ) ) ) )
44 28 43 mpbid ( 𝜑 → ( 𝐽𝑋 ) = ( ( ( 𝐹 ‘ ( ( 𝐽𝑌 ) ‘ 𝐼 ) ) ( .r𝑆 ) ( ( 𝐽𝑋 ) ‘ 𝐼 ) ) ( ·𝑠𝐷 ) ( 𝐽𝑌 ) ) )
45 44 fveq2d ( 𝜑 → ( 𝐿 ‘ ( 𝐽𝑋 ) ) = ( 𝐿 ‘ ( ( ( 𝐹 ‘ ( ( 𝐽𝑌 ) ‘ 𝐼 ) ) ( .r𝑆 ) ( ( 𝐽𝑋 ) ‘ 𝐼 ) ) ( ·𝑠𝐷 ) ( 𝐽𝑌 ) ) ) )
46 1 3 9 dvhlvec ( 𝜑𝑈 ∈ LVec )
47 15 lvecdrng ( 𝑈 ∈ LVec → 𝑆 ∈ DivRing )
48 46 47 syl ( 𝜑𝑆 ∈ DivRing )
49 1 2 3 4 5 6 7 8 9 10 11 12 13 lcfrlem22 ( 𝜑𝐵𝐴 )
50 4 8 29 49 lsatssv ( 𝜑𝐵𝑉 )
51 50 19 sseldd ( 𝜑𝐼𝑉 )
52 15 17 4 31 lflcl ( ( 𝑈 ∈ LMod ∧ ( 𝐽𝑌 ) ∈ ( LFnl ‘ 𝑈 ) ∧ 𝐼𝑉 ) → ( ( 𝐽𝑌 ) ‘ 𝐼 ) ∈ 𝑅 )
53 29 39 51 52 syl3anc ( 𝜑 → ( ( 𝐽𝑌 ) ‘ 𝐼 ) ∈ 𝑅 )
54 17 16 23 drnginvrn0 ( ( 𝑆 ∈ DivRing ∧ ( ( 𝐽𝑌 ) ‘ 𝐼 ) ∈ 𝑅 ∧ ( ( 𝐽𝑌 ) ‘ 𝐼 ) ≠ 𝑄 ) → ( 𝐹 ‘ ( ( 𝐽𝑌 ) ‘ 𝐼 ) ) ≠ 𝑄 )
55 48 53 22 54 syl3anc ( 𝜑 → ( 𝐹 ‘ ( ( 𝐽𝑌 ) ‘ 𝐼 ) ) ≠ 𝑄 )
56 eqid ( .r𝑆 ) = ( .r𝑆 )
57 17 16 23 drnginvrcl ( ( 𝑆 ∈ DivRing ∧ ( ( 𝐽𝑌 ) ‘ 𝐼 ) ∈ 𝑅 ∧ ( ( 𝐽𝑌 ) ‘ 𝐼 ) ≠ 𝑄 ) → ( 𝐹 ‘ ( ( 𝐽𝑌 ) ‘ 𝐼 ) ) ∈ 𝑅 )
58 48 53 22 57 syl3anc ( 𝜑 → ( 𝐹 ‘ ( ( 𝐽𝑌 ) ‘ 𝐼 ) ) ∈ 𝑅 )
59 15 17 4 31 lflcl ( ( 𝑈 ∈ LMod ∧ ( 𝐽𝑋 ) ∈ ( LFnl ‘ 𝑈 ) ∧ 𝐼𝑉 ) → ( ( 𝐽𝑋 ) ‘ 𝐼 ) ∈ 𝑅 )
60 29 35 51 59 syl3anc ( 𝜑 → ( ( 𝐽𝑋 ) ‘ 𝐼 ) ∈ 𝑅 )
61 17 16 56 48 58 60 drngmulne0 ( 𝜑 → ( ( ( 𝐹 ‘ ( ( 𝐽𝑌 ) ‘ 𝐼 ) ) ( .r𝑆 ) ( ( 𝐽𝑋 ) ‘ 𝐼 ) ) ≠ 𝑄 ↔ ( ( 𝐹 ‘ ( ( 𝐽𝑌 ) ‘ 𝐼 ) ) ≠ 𝑄 ∧ ( ( 𝐽𝑋 ) ‘ 𝐼 ) ≠ 𝑄 ) ) )
62 55 26 61 mpbir2and ( 𝜑 → ( ( 𝐹 ‘ ( ( 𝐽𝑌 ) ‘ 𝐼 ) ) ( .r𝑆 ) ( ( 𝐽𝑋 ) ‘ 𝐼 ) ) ≠ 𝑄 )
63 15 17 16 31 20 21 37 46 39 38 62 ldualkrsc ( 𝜑 → ( 𝐿 ‘ ( ( ( 𝐹 ‘ ( ( 𝐽𝑌 ) ‘ 𝐼 ) ) ( .r𝑆 ) ( ( 𝐽𝑋 ) ‘ 𝐼 ) ) ( ·𝑠𝐷 ) ( 𝐽𝑌 ) ) ) = ( 𝐿 ‘ ( 𝐽𝑌 ) ) )
64 45 63 eqtrd ( 𝜑 → ( 𝐿 ‘ ( 𝐽𝑋 ) ) = ( 𝐿 ‘ ( 𝐽𝑌 ) ) )
65 64 fveq2d ( 𝜑 → ( ‘ ( 𝐿 ‘ ( 𝐽𝑋 ) ) ) = ( ‘ ( 𝐿 ‘ ( 𝐽𝑌 ) ) ) )
66 1 2 3 4 5 14 15 17 6 31 20 21 33 34 18 9 10 7 lcfrlem14 ( 𝜑 → ( ‘ ( 𝐿 ‘ ( 𝐽𝑋 ) ) ) = ( 𝑁 ‘ { 𝑋 } ) )
67 1 2 3 4 5 14 15 17 6 31 20 21 33 34 18 9 11 7 lcfrlem14 ( 𝜑 → ( ‘ ( 𝐿 ‘ ( 𝐽𝑌 ) ) ) = ( 𝑁 ‘ { 𝑌 } ) )
68 65 66 67 3eqtr3d ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) )