| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcfrlem17.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
lcfrlem17.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
lcfrlem17.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
lcfrlem17.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
| 5 |
|
lcfrlem17.p |
⊢ + = ( +g ‘ 𝑈 ) |
| 6 |
|
lcfrlem17.z |
⊢ 0 = ( 0g ‘ 𝑈 ) |
| 7 |
|
lcfrlem17.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
| 8 |
|
lcfrlem17.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑈 ) |
| 9 |
|
lcfrlem17.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 10 |
|
lcfrlem17.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 11 |
|
lcfrlem17.y |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 12 |
|
lcfrlem17.ne |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |
| 13 |
|
lcfrlem22.b |
⊢ 𝐵 = ( ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∩ ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) ) |
| 14 |
1 2 3 4 5 6 7 8 9 10 11 12
|
lcfrlem21 |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∩ ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) ) ∈ 𝐴 ) |
| 15 |
13 14
|
eqeltrid |
⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) |