Description: Lemma for lcfr . (Contributed by NM, 24-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lcfrlem17.h | ⊢ 𝐻 = ( LHyp ‘ 𝐾 ) | |
lcfrlem17.o | ⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) | ||
lcfrlem17.u | ⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | ||
lcfrlem17.v | ⊢ 𝑉 = ( Base ‘ 𝑈 ) | ||
lcfrlem17.p | ⊢ + = ( +g ‘ 𝑈 ) | ||
lcfrlem17.z | ⊢ 0 = ( 0g ‘ 𝑈 ) | ||
lcfrlem17.n | ⊢ 𝑁 = ( LSpan ‘ 𝑈 ) | ||
lcfrlem17.a | ⊢ 𝐴 = ( LSAtoms ‘ 𝑈 ) | ||
lcfrlem17.k | ⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) | ||
lcfrlem17.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) | ||
lcfrlem17.y | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) | ||
lcfrlem17.ne | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) | ||
lcfrlem22.b | ⊢ 𝐵 = ( ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∩ ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) ) | ||
Assertion | lcfrlem22 | ⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcfrlem17.h | ⊢ 𝐻 = ( LHyp ‘ 𝐾 ) | |
2 | lcfrlem17.o | ⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) | |
3 | lcfrlem17.u | ⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | |
4 | lcfrlem17.v | ⊢ 𝑉 = ( Base ‘ 𝑈 ) | |
5 | lcfrlem17.p | ⊢ + = ( +g ‘ 𝑈 ) | |
6 | lcfrlem17.z | ⊢ 0 = ( 0g ‘ 𝑈 ) | |
7 | lcfrlem17.n | ⊢ 𝑁 = ( LSpan ‘ 𝑈 ) | |
8 | lcfrlem17.a | ⊢ 𝐴 = ( LSAtoms ‘ 𝑈 ) | |
9 | lcfrlem17.k | ⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) | |
10 | lcfrlem17.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) | |
11 | lcfrlem17.y | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) | |
12 | lcfrlem17.ne | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) | |
13 | lcfrlem22.b | ⊢ 𝐵 = ( ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∩ ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) ) | |
14 | 1 2 3 4 5 6 7 8 9 10 11 12 | lcfrlem21 | ⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∩ ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) ) ∈ 𝐴 ) |
15 | 13 14 | eqeltrid | ⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) |