Description: Lemma for lcfr . (Contributed by NM, 24-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lcfrlem17.h | |- H = ( LHyp ` K ) |
|
lcfrlem17.o | |- ._|_ = ( ( ocH ` K ) ` W ) |
||
lcfrlem17.u | |- U = ( ( DVecH ` K ) ` W ) |
||
lcfrlem17.v | |- V = ( Base ` U ) |
||
lcfrlem17.p | |- .+ = ( +g ` U ) |
||
lcfrlem17.z | |- .0. = ( 0g ` U ) |
||
lcfrlem17.n | |- N = ( LSpan ` U ) |
||
lcfrlem17.a | |- A = ( LSAtoms ` U ) |
||
lcfrlem17.k | |- ( ph -> ( K e. HL /\ W e. H ) ) |
||
lcfrlem17.x | |- ( ph -> X e. ( V \ { .0. } ) ) |
||
lcfrlem17.y | |- ( ph -> Y e. ( V \ { .0. } ) ) |
||
lcfrlem17.ne | |- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) |
||
lcfrlem22.b | |- B = ( ( N ` { X , Y } ) i^i ( ._|_ ` { ( X .+ Y ) } ) ) |
||
Assertion | lcfrlem22 | |- ( ph -> B e. A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcfrlem17.h | |- H = ( LHyp ` K ) |
|
2 | lcfrlem17.o | |- ._|_ = ( ( ocH ` K ) ` W ) |
|
3 | lcfrlem17.u | |- U = ( ( DVecH ` K ) ` W ) |
|
4 | lcfrlem17.v | |- V = ( Base ` U ) |
|
5 | lcfrlem17.p | |- .+ = ( +g ` U ) |
|
6 | lcfrlem17.z | |- .0. = ( 0g ` U ) |
|
7 | lcfrlem17.n | |- N = ( LSpan ` U ) |
|
8 | lcfrlem17.a | |- A = ( LSAtoms ` U ) |
|
9 | lcfrlem17.k | |- ( ph -> ( K e. HL /\ W e. H ) ) |
|
10 | lcfrlem17.x | |- ( ph -> X e. ( V \ { .0. } ) ) |
|
11 | lcfrlem17.y | |- ( ph -> Y e. ( V \ { .0. } ) ) |
|
12 | lcfrlem17.ne | |- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) |
|
13 | lcfrlem22.b | |- B = ( ( N ` { X , Y } ) i^i ( ._|_ ` { ( X .+ Y ) } ) ) |
|
14 | 1 2 3 4 5 6 7 8 9 10 11 12 | lcfrlem21 | |- ( ph -> ( ( N ` { X , Y } ) i^i ( ._|_ ` { ( X .+ Y ) } ) ) e. A ) |
15 | 13 14 | eqeltrid | |- ( ph -> B e. A ) |