| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcfrlem17.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
lcfrlem17.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
lcfrlem17.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
lcfrlem17.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
| 5 |
|
lcfrlem17.p |
⊢ + = ( +g ‘ 𝑈 ) |
| 6 |
|
lcfrlem17.z |
⊢ 0 = ( 0g ‘ 𝑈 ) |
| 7 |
|
lcfrlem17.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
| 8 |
|
lcfrlem17.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑈 ) |
| 9 |
|
lcfrlem17.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 10 |
|
lcfrlem17.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 11 |
|
lcfrlem17.y |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 12 |
|
lcfrlem17.ne |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |
| 13 |
|
lcfrlem22.b |
⊢ 𝐵 = ( ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∩ ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) ) |
| 14 |
|
lcfrlem23.s |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
| 15 |
13
|
fveq2i |
⊢ ( ⊥ ‘ 𝐵 ) = ( ⊥ ‘ ( ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∩ ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) ) ) |
| 16 |
|
eqid |
⊢ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
| 17 |
|
eqid |
⊢ ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) |
| 18 |
10
|
eldifad |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 19 |
11
|
eldifad |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
| 20 |
1 3 4 7 16 9 18 19
|
dihprrn |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 21 |
1 3 9
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
| 22 |
4 5
|
lmodvacl |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 + 𝑌 ) ∈ 𝑉 ) |
| 23 |
21 18 19 22
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ 𝑉 ) |
| 24 |
23
|
snssd |
⊢ ( 𝜑 → { ( 𝑋 + 𝑌 ) } ⊆ 𝑉 ) |
| 25 |
1 16 3 4 2
|
dochcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ { ( 𝑋 + 𝑌 ) } ⊆ 𝑉 ) → ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 26 |
9 24 25
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 27 |
1 16 3 4 2 17 9 20 26
|
dochdmm1 |
⊢ ( 𝜑 → ( ⊥ ‘ ( ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∩ ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) ) ) = ( ( ⊥ ‘ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) ( ⊥ ‘ ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) ) ) ) |
| 28 |
1 3 2 4 7 9 23
|
dochocsn |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) ) = ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ) |
| 29 |
28
|
oveq2d |
⊢ ( 𝜑 → ( ( ⊥ ‘ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) ( ⊥ ‘ ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) ) ) = ( ( ⊥ ‘ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ) ) |
| 30 |
|
prssi |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → { 𝑋 , 𝑌 } ⊆ 𝑉 ) |
| 31 |
18 19 30
|
syl2anc |
⊢ ( 𝜑 → { 𝑋 , 𝑌 } ⊆ 𝑉 ) |
| 32 |
4 7
|
lspssv |
⊢ ( ( 𝑈 ∈ LMod ∧ { 𝑋 , 𝑌 } ⊆ 𝑉 ) → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ⊆ 𝑉 ) |
| 33 |
21 31 32
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ⊆ 𝑉 ) |
| 34 |
1 16 3 4 2
|
dochcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ⊆ 𝑉 ) → ( ⊥ ‘ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 35 |
9 33 34
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 36 |
1 3 4 14 7 16 17 9 35 23
|
dihjat1 |
⊢ ( 𝜑 → ( ( ⊥ ‘ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ) = ( ( ⊥ ‘ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ⊕ ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ) ) |
| 37 |
27 29 36
|
3eqtrd |
⊢ ( 𝜑 → ( ⊥ ‘ ( ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∩ ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) ) ) = ( ( ⊥ ‘ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ⊕ ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ) ) |
| 38 |
15 37
|
eqtrid |
⊢ ( 𝜑 → ( ⊥ ‘ 𝐵 ) = ( ( ⊥ ‘ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ⊕ ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ) ) |
| 39 |
38
|
ineq2d |
⊢ ( 𝜑 → ( ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { 𝑌 } ) ) ∩ ( ⊥ ‘ 𝐵 ) ) = ( ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { 𝑌 } ) ) ∩ ( ( ⊥ ‘ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ⊕ ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ) ) ) |
| 40 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
| 41 |
40
|
lsssssubg |
⊢ ( 𝑈 ∈ LMod → ( LSubSp ‘ 𝑈 ) ⊆ ( SubGrp ‘ 𝑈 ) ) |
| 42 |
21 41
|
syl |
⊢ ( 𝜑 → ( LSubSp ‘ 𝑈 ) ⊆ ( SubGrp ‘ 𝑈 ) ) |
| 43 |
4 40 7
|
lspsncl |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 44 |
21 18 43
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 45 |
4 40 7
|
lspsncl |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 46 |
21 19 45
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 47 |
40 14
|
lsmcl |
⊢ ( ( 𝑈 ∈ LMod ∧ ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑈 ) ∧ ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑈 ) ) → ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { 𝑌 } ) ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 48 |
21 44 46 47
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { 𝑌 } ) ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 49 |
42 48
|
sseldd |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { 𝑌 } ) ) ∈ ( SubGrp ‘ 𝑈 ) ) |
| 50 |
1 3 4 40 2
|
dochlss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ⊆ 𝑉 ) → ( ⊥ ‘ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 51 |
9 33 50
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 52 |
42 51
|
sseldd |
⊢ ( 𝜑 → ( ⊥ ‘ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ∈ ( SubGrp ‘ 𝑈 ) ) |
| 53 |
4 40 7
|
lspsncl |
⊢ ( ( 𝑈 ∈ LMod ∧ ( 𝑋 + 𝑌 ) ∈ 𝑉 ) → ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 54 |
21 23 53
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 55 |
42 54
|
sseldd |
⊢ ( 𝜑 → ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ∈ ( SubGrp ‘ 𝑈 ) ) |
| 56 |
4 5 7 14
|
lspsntri |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ⊆ ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 57 |
21 18 19 56
|
syl3anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ⊆ ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 58 |
14
|
lsmmod2 |
⊢ ( ( ( ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { 𝑌 } ) ) ∈ ( SubGrp ‘ 𝑈 ) ∧ ( ⊥ ‘ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ∈ ( SubGrp ‘ 𝑈 ) ∧ ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ∈ ( SubGrp ‘ 𝑈 ) ) ∧ ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ⊆ ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { 𝑌 } ) ) ) → ( ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { 𝑌 } ) ) ∩ ( ( ⊥ ‘ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ⊕ ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ) ) = ( ( ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { 𝑌 } ) ) ∩ ( ⊥ ‘ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ) ⊕ ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ) ) |
| 59 |
49 52 55 57 58
|
syl31anc |
⊢ ( 𝜑 → ( ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { 𝑌 } ) ) ∩ ( ( ⊥ ‘ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ⊕ ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ) ) = ( ( ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { 𝑌 } ) ) ∩ ( ⊥ ‘ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ) ⊕ ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ) ) |
| 60 |
4 7 14 21 18 19
|
lsmpr |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) = ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 61 |
60
|
ineq1d |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∩ ( ⊥ ‘ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ) = ( ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { 𝑌 } ) ) ∩ ( ⊥ ‘ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ) ) |
| 62 |
4 40 7 21 18 19
|
lspprcl |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 63 |
1 3 40 6 2
|
dochnoncon |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∈ ( LSubSp ‘ 𝑈 ) ) → ( ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∩ ( ⊥ ‘ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ) = { 0 } ) |
| 64 |
9 62 63
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∩ ( ⊥ ‘ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ) = { 0 } ) |
| 65 |
61 64
|
eqtr3d |
⊢ ( 𝜑 → ( ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { 𝑌 } ) ) ∩ ( ⊥ ‘ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ) = { 0 } ) |
| 66 |
65
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { 𝑌 } ) ) ∩ ( ⊥ ‘ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ) ⊕ ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ) = ( { 0 } ⊕ ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ) ) |
| 67 |
6 14
|
lsm02 |
⊢ ( ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ∈ ( SubGrp ‘ 𝑈 ) → ( { 0 } ⊕ ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ) = ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ) |
| 68 |
55 67
|
syl |
⊢ ( 𝜑 → ( { 0 } ⊕ ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ) = ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ) |
| 69 |
66 68
|
eqtrd |
⊢ ( 𝜑 → ( ( ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { 𝑌 } ) ) ∩ ( ⊥ ‘ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ) ⊕ ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ) = ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ) |
| 70 |
39 59 69
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { 𝑌 } ) ) ∩ ( ⊥ ‘ 𝐵 ) ) = ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ) |
| 71 |
70
|
fveq2d |
⊢ ( 𝜑 → ( ⊥ ‘ ( ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { 𝑌 } ) ) ∩ ( ⊥ ‘ 𝐵 ) ) ) = ( ⊥ ‘ ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ) ) |
| 72 |
1 3 4 14 7 16 9 18 19
|
dihsmsnrn |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { 𝑌 } ) ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 73 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
lcfrlem22 |
⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) |
| 74 |
4 8 21 73
|
lsatssv |
⊢ ( 𝜑 → 𝐵 ⊆ 𝑉 ) |
| 75 |
1 16 3 4 2
|
dochcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐵 ⊆ 𝑉 ) → ( ⊥ ‘ 𝐵 ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 76 |
9 74 75
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ 𝐵 ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 77 |
1 16 3 4 2 17 9 72 76
|
dochdmm1 |
⊢ ( 𝜑 → ( ⊥ ‘ ( ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { 𝑌 } ) ) ∩ ( ⊥ ‘ 𝐵 ) ) ) = ( ( ⊥ ‘ ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { 𝑌 } ) ) ) ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) ) |
| 78 |
60
|
fveq2d |
⊢ ( 𝜑 → ( ⊥ ‘ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) = ( ⊥ ‘ ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { 𝑌 } ) ) ) ) |
| 79 |
1 3 2 4 7 9 31
|
dochocsp |
⊢ ( 𝜑 → ( ⊥ ‘ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) = ( ⊥ ‘ { 𝑋 , 𝑌 } ) ) |
| 80 |
78 79
|
eqtr3d |
⊢ ( 𝜑 → ( ⊥ ‘ ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { 𝑌 } ) ) ) = ( ⊥ ‘ { 𝑋 , 𝑌 } ) ) |
| 81 |
1 3 16 8
|
dih1dimat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐵 ∈ 𝐴 ) → 𝐵 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 82 |
9 73 81
|
syl2anc |
⊢ ( 𝜑 → 𝐵 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 83 |
1 16 2
|
dochoc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐵 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) → ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) = 𝐵 ) |
| 84 |
9 82 83
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) = 𝐵 ) |
| 85 |
80 84
|
oveq12d |
⊢ ( 𝜑 → ( ( ⊥ ‘ ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { 𝑌 } ) ) ) ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) = ( ( ⊥ ‘ { 𝑋 , 𝑌 } ) ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) 𝐵 ) ) |
| 86 |
1 16 3 4 2
|
dochcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ { 𝑋 , 𝑌 } ⊆ 𝑉 ) → ( ⊥ ‘ { 𝑋 , 𝑌 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 87 |
9 31 86
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ { 𝑋 , 𝑌 } ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 88 |
1 16 17 3 14 8 9 87 73
|
dihjat2 |
⊢ ( 𝜑 → ( ( ⊥ ‘ { 𝑋 , 𝑌 } ) ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) 𝐵 ) = ( ( ⊥ ‘ { 𝑋 , 𝑌 } ) ⊕ 𝐵 ) ) |
| 89 |
77 85 88
|
3eqtrd |
⊢ ( 𝜑 → ( ⊥ ‘ ( ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { 𝑌 } ) ) ∩ ( ⊥ ‘ 𝐵 ) ) ) = ( ( ⊥ ‘ { 𝑋 , 𝑌 } ) ⊕ 𝐵 ) ) |
| 90 |
1 3 2 4 7 9 24
|
dochocsp |
⊢ ( 𝜑 → ( ⊥ ‘ ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ) = ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) ) |
| 91 |
71 89 90
|
3eqtr3d |
⊢ ( 𝜑 → ( ( ⊥ ‘ { 𝑋 , 𝑌 } ) ⊕ 𝐵 ) = ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) ) |