Step |
Hyp |
Ref |
Expression |
1 |
|
lcfrlem17.h |
|- H = ( LHyp ` K ) |
2 |
|
lcfrlem17.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
3 |
|
lcfrlem17.u |
|- U = ( ( DVecH ` K ) ` W ) |
4 |
|
lcfrlem17.v |
|- V = ( Base ` U ) |
5 |
|
lcfrlem17.p |
|- .+ = ( +g ` U ) |
6 |
|
lcfrlem17.z |
|- .0. = ( 0g ` U ) |
7 |
|
lcfrlem17.n |
|- N = ( LSpan ` U ) |
8 |
|
lcfrlem17.a |
|- A = ( LSAtoms ` U ) |
9 |
|
lcfrlem17.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
10 |
|
lcfrlem17.x |
|- ( ph -> X e. ( V \ { .0. } ) ) |
11 |
|
lcfrlem17.y |
|- ( ph -> Y e. ( V \ { .0. } ) ) |
12 |
|
lcfrlem17.ne |
|- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) |
13 |
|
lcfrlem22.b |
|- B = ( ( N ` { X , Y } ) i^i ( ._|_ ` { ( X .+ Y ) } ) ) |
14 |
|
lcfrlem24.t |
|- .x. = ( .s ` U ) |
15 |
|
lcfrlem24.s |
|- S = ( Scalar ` U ) |
16 |
|
lcfrlem24.q |
|- Q = ( 0g ` S ) |
17 |
|
lcfrlem24.r |
|- R = ( Base ` S ) |
18 |
|
lcfrlem24.j |
|- J = ( x e. ( V \ { .0. } ) |-> ( v e. V |-> ( iota_ k e. R E. w e. ( ._|_ ` { x } ) v = ( w .+ ( k .x. x ) ) ) ) ) |
19 |
|
lcfrlem24.ib |
|- ( ph -> I e. B ) |
20 |
|
lcfrlem24.l |
|- L = ( LKer ` U ) |
21 |
|
lcfrlem25.d |
|- D = ( LDual ` U ) |
22 |
|
lcfrlem28.jn |
|- ( ph -> ( ( J ` Y ) ` I ) =/= Q ) |
23 |
|
lcfrlem29.i |
|- F = ( invr ` S ) |
24 |
|
lcfrlem30.m |
|- .- = ( -g ` D ) |
25 |
|
lcfrlem30.c |
|- C = ( ( J ` X ) .- ( ( ( F ` ( ( J ` Y ) ` I ) ) ( .r ` S ) ( ( J ` X ) ` I ) ) ( .s ` D ) ( J ` Y ) ) ) |
26 |
|
lcfrlem31.xi |
|- ( ph -> ( ( J ` X ) ` I ) =/= Q ) |
27 |
|
lcfrlem31.cn |
|- ( ph -> C = ( 0g ` D ) ) |
28 |
25 27
|
eqtr3id |
|- ( ph -> ( ( J ` X ) .- ( ( ( F ` ( ( J ` Y ) ` I ) ) ( .r ` S ) ( ( J ` X ) ` I ) ) ( .s ` D ) ( J ` Y ) ) ) = ( 0g ` D ) ) |
29 |
1 3 9
|
dvhlmod |
|- ( ph -> U e. LMod ) |
30 |
21 29
|
lduallmod |
|- ( ph -> D e. LMod ) |
31 |
|
eqid |
|- ( LFnl ` U ) = ( LFnl ` U ) |
32 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
33 |
|
eqid |
|- ( 0g ` D ) = ( 0g ` D ) |
34 |
|
eqid |
|- { f e. ( LFnl ` U ) | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } = { f e. ( LFnl ` U ) | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } |
35 |
1 2 3 4 5 14 15 17 6 31 20 21 33 34 18 9 10
|
lcfrlem10 |
|- ( ph -> ( J ` X ) e. ( LFnl ` U ) ) |
36 |
31 21 32 29 35
|
ldualelvbase |
|- ( ph -> ( J ` X ) e. ( Base ` D ) ) |
37 |
|
eqid |
|- ( .s ` D ) = ( .s ` D ) |
38 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
|
lcfrlem29 |
|- ( ph -> ( ( F ` ( ( J ` Y ) ` I ) ) ( .r ` S ) ( ( J ` X ) ` I ) ) e. R ) |
39 |
1 2 3 4 5 14 15 17 6 31 20 21 33 34 18 9 11
|
lcfrlem10 |
|- ( ph -> ( J ` Y ) e. ( LFnl ` U ) ) |
40 |
31 15 17 21 37 29 38 39
|
ldualvscl |
|- ( ph -> ( ( ( F ` ( ( J ` Y ) ` I ) ) ( .r ` S ) ( ( J ` X ) ` I ) ) ( .s ` D ) ( J ` Y ) ) e. ( LFnl ` U ) ) |
41 |
31 21 32 29 40
|
ldualelvbase |
|- ( ph -> ( ( ( F ` ( ( J ` Y ) ` I ) ) ( .r ` S ) ( ( J ` X ) ` I ) ) ( .s ` D ) ( J ` Y ) ) e. ( Base ` D ) ) |
42 |
32 33 24
|
lmodsubeq0 |
|- ( ( D e. LMod /\ ( J ` X ) e. ( Base ` D ) /\ ( ( ( F ` ( ( J ` Y ) ` I ) ) ( .r ` S ) ( ( J ` X ) ` I ) ) ( .s ` D ) ( J ` Y ) ) e. ( Base ` D ) ) -> ( ( ( J ` X ) .- ( ( ( F ` ( ( J ` Y ) ` I ) ) ( .r ` S ) ( ( J ` X ) ` I ) ) ( .s ` D ) ( J ` Y ) ) ) = ( 0g ` D ) <-> ( J ` X ) = ( ( ( F ` ( ( J ` Y ) ` I ) ) ( .r ` S ) ( ( J ` X ) ` I ) ) ( .s ` D ) ( J ` Y ) ) ) ) |
43 |
30 36 41 42
|
syl3anc |
|- ( ph -> ( ( ( J ` X ) .- ( ( ( F ` ( ( J ` Y ) ` I ) ) ( .r ` S ) ( ( J ` X ) ` I ) ) ( .s ` D ) ( J ` Y ) ) ) = ( 0g ` D ) <-> ( J ` X ) = ( ( ( F ` ( ( J ` Y ) ` I ) ) ( .r ` S ) ( ( J ` X ) ` I ) ) ( .s ` D ) ( J ` Y ) ) ) ) |
44 |
28 43
|
mpbid |
|- ( ph -> ( J ` X ) = ( ( ( F ` ( ( J ` Y ) ` I ) ) ( .r ` S ) ( ( J ` X ) ` I ) ) ( .s ` D ) ( J ` Y ) ) ) |
45 |
44
|
fveq2d |
|- ( ph -> ( L ` ( J ` X ) ) = ( L ` ( ( ( F ` ( ( J ` Y ) ` I ) ) ( .r ` S ) ( ( J ` X ) ` I ) ) ( .s ` D ) ( J ` Y ) ) ) ) |
46 |
1 3 9
|
dvhlvec |
|- ( ph -> U e. LVec ) |
47 |
15
|
lvecdrng |
|- ( U e. LVec -> S e. DivRing ) |
48 |
46 47
|
syl |
|- ( ph -> S e. DivRing ) |
49 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
lcfrlem22 |
|- ( ph -> B e. A ) |
50 |
4 8 29 49
|
lsatssv |
|- ( ph -> B C_ V ) |
51 |
50 19
|
sseldd |
|- ( ph -> I e. V ) |
52 |
15 17 4 31
|
lflcl |
|- ( ( U e. LMod /\ ( J ` Y ) e. ( LFnl ` U ) /\ I e. V ) -> ( ( J ` Y ) ` I ) e. R ) |
53 |
29 39 51 52
|
syl3anc |
|- ( ph -> ( ( J ` Y ) ` I ) e. R ) |
54 |
17 16 23
|
drnginvrn0 |
|- ( ( S e. DivRing /\ ( ( J ` Y ) ` I ) e. R /\ ( ( J ` Y ) ` I ) =/= Q ) -> ( F ` ( ( J ` Y ) ` I ) ) =/= Q ) |
55 |
48 53 22 54
|
syl3anc |
|- ( ph -> ( F ` ( ( J ` Y ) ` I ) ) =/= Q ) |
56 |
|
eqid |
|- ( .r ` S ) = ( .r ` S ) |
57 |
17 16 23
|
drnginvrcl |
|- ( ( S e. DivRing /\ ( ( J ` Y ) ` I ) e. R /\ ( ( J ` Y ) ` I ) =/= Q ) -> ( F ` ( ( J ` Y ) ` I ) ) e. R ) |
58 |
48 53 22 57
|
syl3anc |
|- ( ph -> ( F ` ( ( J ` Y ) ` I ) ) e. R ) |
59 |
15 17 4 31
|
lflcl |
|- ( ( U e. LMod /\ ( J ` X ) e. ( LFnl ` U ) /\ I e. V ) -> ( ( J ` X ) ` I ) e. R ) |
60 |
29 35 51 59
|
syl3anc |
|- ( ph -> ( ( J ` X ) ` I ) e. R ) |
61 |
17 16 56 48 58 60
|
drngmulne0 |
|- ( ph -> ( ( ( F ` ( ( J ` Y ) ` I ) ) ( .r ` S ) ( ( J ` X ) ` I ) ) =/= Q <-> ( ( F ` ( ( J ` Y ) ` I ) ) =/= Q /\ ( ( J ` X ) ` I ) =/= Q ) ) ) |
62 |
55 26 61
|
mpbir2and |
|- ( ph -> ( ( F ` ( ( J ` Y ) ` I ) ) ( .r ` S ) ( ( J ` X ) ` I ) ) =/= Q ) |
63 |
15 17 16 31 20 21 37 46 39 38 62
|
ldualkrsc |
|- ( ph -> ( L ` ( ( ( F ` ( ( J ` Y ) ` I ) ) ( .r ` S ) ( ( J ` X ) ` I ) ) ( .s ` D ) ( J ` Y ) ) ) = ( L ` ( J ` Y ) ) ) |
64 |
45 63
|
eqtrd |
|- ( ph -> ( L ` ( J ` X ) ) = ( L ` ( J ` Y ) ) ) |
65 |
64
|
fveq2d |
|- ( ph -> ( ._|_ ` ( L ` ( J ` X ) ) ) = ( ._|_ ` ( L ` ( J ` Y ) ) ) ) |
66 |
1 2 3 4 5 14 15 17 6 31 20 21 33 34 18 9 10 7
|
lcfrlem14 |
|- ( ph -> ( ._|_ ` ( L ` ( J ` X ) ) ) = ( N ` { X } ) ) |
67 |
1 2 3 4 5 14 15 17 6 31 20 21 33 34 18 9 11 7
|
lcfrlem14 |
|- ( ph -> ( ._|_ ` ( L ` ( J ` Y ) ) ) = ( N ` { Y } ) ) |
68 |
65 66 67
|
3eqtr3d |
|- ( ph -> ( N ` { X } ) = ( N ` { Y } ) ) |