Metamath Proof Explorer


Theorem lcfrlem32

Description: Lemma for lcfr . (Contributed by NM, 10-Mar-2015)

Ref Expression
Hypotheses lcfrlem17.h
|- H = ( LHyp ` K )
lcfrlem17.o
|- ._|_ = ( ( ocH ` K ) ` W )
lcfrlem17.u
|- U = ( ( DVecH ` K ) ` W )
lcfrlem17.v
|- V = ( Base ` U )
lcfrlem17.p
|- .+ = ( +g ` U )
lcfrlem17.z
|- .0. = ( 0g ` U )
lcfrlem17.n
|- N = ( LSpan ` U )
lcfrlem17.a
|- A = ( LSAtoms ` U )
lcfrlem17.k
|- ( ph -> ( K e. HL /\ W e. H ) )
lcfrlem17.x
|- ( ph -> X e. ( V \ { .0. } ) )
lcfrlem17.y
|- ( ph -> Y e. ( V \ { .0. } ) )
lcfrlem17.ne
|- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) )
lcfrlem22.b
|- B = ( ( N ` { X , Y } ) i^i ( ._|_ ` { ( X .+ Y ) } ) )
lcfrlem24.t
|- .x. = ( .s ` U )
lcfrlem24.s
|- S = ( Scalar ` U )
lcfrlem24.q
|- Q = ( 0g ` S )
lcfrlem24.r
|- R = ( Base ` S )
lcfrlem24.j
|- J = ( x e. ( V \ { .0. } ) |-> ( v e. V |-> ( iota_ k e. R E. w e. ( ._|_ ` { x } ) v = ( w .+ ( k .x. x ) ) ) ) )
lcfrlem24.ib
|- ( ph -> I e. B )
lcfrlem24.l
|- L = ( LKer ` U )
lcfrlem25.d
|- D = ( LDual ` U )
lcfrlem28.jn
|- ( ph -> ( ( J ` Y ) ` I ) =/= Q )
lcfrlem29.i
|- F = ( invr ` S )
lcfrlem30.m
|- .- = ( -g ` D )
lcfrlem30.c
|- C = ( ( J ` X ) .- ( ( ( F ` ( ( J ` Y ) ` I ) ) ( .r ` S ) ( ( J ` X ) ` I ) ) ( .s ` D ) ( J ` Y ) ) )
lcfrlem31.xi
|- ( ph -> ( ( J ` X ) ` I ) =/= Q )
Assertion lcfrlem32
|- ( ph -> C =/= ( 0g ` D ) )

Proof

Step Hyp Ref Expression
1 lcfrlem17.h
 |-  H = ( LHyp ` K )
2 lcfrlem17.o
 |-  ._|_ = ( ( ocH ` K ) ` W )
3 lcfrlem17.u
 |-  U = ( ( DVecH ` K ) ` W )
4 lcfrlem17.v
 |-  V = ( Base ` U )
5 lcfrlem17.p
 |-  .+ = ( +g ` U )
6 lcfrlem17.z
 |-  .0. = ( 0g ` U )
7 lcfrlem17.n
 |-  N = ( LSpan ` U )
8 lcfrlem17.a
 |-  A = ( LSAtoms ` U )
9 lcfrlem17.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
10 lcfrlem17.x
 |-  ( ph -> X e. ( V \ { .0. } ) )
11 lcfrlem17.y
 |-  ( ph -> Y e. ( V \ { .0. } ) )
12 lcfrlem17.ne
 |-  ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) )
13 lcfrlem22.b
 |-  B = ( ( N ` { X , Y } ) i^i ( ._|_ ` { ( X .+ Y ) } ) )
14 lcfrlem24.t
 |-  .x. = ( .s ` U )
15 lcfrlem24.s
 |-  S = ( Scalar ` U )
16 lcfrlem24.q
 |-  Q = ( 0g ` S )
17 lcfrlem24.r
 |-  R = ( Base ` S )
18 lcfrlem24.j
 |-  J = ( x e. ( V \ { .0. } ) |-> ( v e. V |-> ( iota_ k e. R E. w e. ( ._|_ ` { x } ) v = ( w .+ ( k .x. x ) ) ) ) )
19 lcfrlem24.ib
 |-  ( ph -> I e. B )
20 lcfrlem24.l
 |-  L = ( LKer ` U )
21 lcfrlem25.d
 |-  D = ( LDual ` U )
22 lcfrlem28.jn
 |-  ( ph -> ( ( J ` Y ) ` I ) =/= Q )
23 lcfrlem29.i
 |-  F = ( invr ` S )
24 lcfrlem30.m
 |-  .- = ( -g ` D )
25 lcfrlem30.c
 |-  C = ( ( J ` X ) .- ( ( ( F ` ( ( J ` Y ) ` I ) ) ( .r ` S ) ( ( J ` X ) ` I ) ) ( .s ` D ) ( J ` Y ) ) )
26 lcfrlem31.xi
 |-  ( ph -> ( ( J ` X ) ` I ) =/= Q )
27 9 adantr
 |-  ( ( ph /\ C = ( 0g ` D ) ) -> ( K e. HL /\ W e. H ) )
28 10 adantr
 |-  ( ( ph /\ C = ( 0g ` D ) ) -> X e. ( V \ { .0. } ) )
29 11 adantr
 |-  ( ( ph /\ C = ( 0g ` D ) ) -> Y e. ( V \ { .0. } ) )
30 12 adantr
 |-  ( ( ph /\ C = ( 0g ` D ) ) -> ( N ` { X } ) =/= ( N ` { Y } ) )
31 19 adantr
 |-  ( ( ph /\ C = ( 0g ` D ) ) -> I e. B )
32 22 adantr
 |-  ( ( ph /\ C = ( 0g ` D ) ) -> ( ( J ` Y ) ` I ) =/= Q )
33 26 adantr
 |-  ( ( ph /\ C = ( 0g ` D ) ) -> ( ( J ` X ) ` I ) =/= Q )
34 simpr
 |-  ( ( ph /\ C = ( 0g ` D ) ) -> C = ( 0g ` D ) )
35 1 2 3 4 5 6 7 8 27 28 29 30 13 14 15 16 17 18 31 20 21 32 23 24 25 33 34 lcfrlem31
 |-  ( ( ph /\ C = ( 0g ` D ) ) -> ( N ` { X } ) = ( N ` { Y } ) )
36 35 ex
 |-  ( ph -> ( C = ( 0g ` D ) -> ( N ` { X } ) = ( N ` { Y } ) ) )
37 36 necon3d
 |-  ( ph -> ( ( N ` { X } ) =/= ( N ` { Y } ) -> C =/= ( 0g ` D ) ) )
38 12 37 mpd
 |-  ( ph -> C =/= ( 0g ` D ) )