Step |
Hyp |
Ref |
Expression |
1 |
|
lcfrlem17.h |
|- H = ( LHyp ` K ) |
2 |
|
lcfrlem17.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
3 |
|
lcfrlem17.u |
|- U = ( ( DVecH ` K ) ` W ) |
4 |
|
lcfrlem17.v |
|- V = ( Base ` U ) |
5 |
|
lcfrlem17.p |
|- .+ = ( +g ` U ) |
6 |
|
lcfrlem17.z |
|- .0. = ( 0g ` U ) |
7 |
|
lcfrlem17.n |
|- N = ( LSpan ` U ) |
8 |
|
lcfrlem17.a |
|- A = ( LSAtoms ` U ) |
9 |
|
lcfrlem17.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
10 |
|
lcfrlem17.x |
|- ( ph -> X e. ( V \ { .0. } ) ) |
11 |
|
lcfrlem17.y |
|- ( ph -> Y e. ( V \ { .0. } ) ) |
12 |
|
lcfrlem17.ne |
|- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) |
13 |
|
lcfrlem22.b |
|- B = ( ( N ` { X , Y } ) i^i ( ._|_ ` { ( X .+ Y ) } ) ) |
14 |
|
lcfrlem24.t |
|- .x. = ( .s ` U ) |
15 |
|
lcfrlem24.s |
|- S = ( Scalar ` U ) |
16 |
|
lcfrlem24.q |
|- Q = ( 0g ` S ) |
17 |
|
lcfrlem24.r |
|- R = ( Base ` S ) |
18 |
|
lcfrlem24.j |
|- J = ( x e. ( V \ { .0. } ) |-> ( v e. V |-> ( iota_ k e. R E. w e. ( ._|_ ` { x } ) v = ( w .+ ( k .x. x ) ) ) ) ) |
19 |
|
lcfrlem24.ib |
|- ( ph -> I e. B ) |
20 |
|
lcfrlem24.l |
|- L = ( LKer ` U ) |
21 |
|
lcfrlem25.d |
|- D = ( LDual ` U ) |
22 |
|
lcfrlem28.jn |
|- ( ph -> ( ( J ` Y ) ` I ) =/= Q ) |
23 |
|
lcfrlem29.i |
|- F = ( invr ` S ) |
24 |
|
lcfrlem30.m |
|- .- = ( -g ` D ) |
25 |
|
lcfrlem30.c |
|- C = ( ( J ` X ) .- ( ( ( F ` ( ( J ` Y ) ` I ) ) ( .r ` S ) ( ( J ` X ) ` I ) ) ( .s ` D ) ( J ` Y ) ) ) |
26 |
|
lcfrlem31.xi |
|- ( ph -> ( ( J ` X ) ` I ) =/= Q ) |
27 |
9
|
adantr |
|- ( ( ph /\ C = ( 0g ` D ) ) -> ( K e. HL /\ W e. H ) ) |
28 |
10
|
adantr |
|- ( ( ph /\ C = ( 0g ` D ) ) -> X e. ( V \ { .0. } ) ) |
29 |
11
|
adantr |
|- ( ( ph /\ C = ( 0g ` D ) ) -> Y e. ( V \ { .0. } ) ) |
30 |
12
|
adantr |
|- ( ( ph /\ C = ( 0g ` D ) ) -> ( N ` { X } ) =/= ( N ` { Y } ) ) |
31 |
19
|
adantr |
|- ( ( ph /\ C = ( 0g ` D ) ) -> I e. B ) |
32 |
22
|
adantr |
|- ( ( ph /\ C = ( 0g ` D ) ) -> ( ( J ` Y ) ` I ) =/= Q ) |
33 |
26
|
adantr |
|- ( ( ph /\ C = ( 0g ` D ) ) -> ( ( J ` X ) ` I ) =/= Q ) |
34 |
|
simpr |
|- ( ( ph /\ C = ( 0g ` D ) ) -> C = ( 0g ` D ) ) |
35 |
1 2 3 4 5 6 7 8 27 28 29 30 13 14 15 16 17 18 31 20 21 32 23 24 25 33 34
|
lcfrlem31 |
|- ( ( ph /\ C = ( 0g ` D ) ) -> ( N ` { X } ) = ( N ` { Y } ) ) |
36 |
35
|
ex |
|- ( ph -> ( C = ( 0g ` D ) -> ( N ` { X } ) = ( N ` { Y } ) ) ) |
37 |
36
|
necon3d |
|- ( ph -> ( ( N ` { X } ) =/= ( N ` { Y } ) -> C =/= ( 0g ` D ) ) ) |
38 |
12 37
|
mpd |
|- ( ph -> C =/= ( 0g ` D ) ) |