| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcfrlem17.h |
|- H = ( LHyp ` K ) |
| 2 |
|
lcfrlem17.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
| 3 |
|
lcfrlem17.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 4 |
|
lcfrlem17.v |
|- V = ( Base ` U ) |
| 5 |
|
lcfrlem17.p |
|- .+ = ( +g ` U ) |
| 6 |
|
lcfrlem17.z |
|- .0. = ( 0g ` U ) |
| 7 |
|
lcfrlem17.n |
|- N = ( LSpan ` U ) |
| 8 |
|
lcfrlem17.a |
|- A = ( LSAtoms ` U ) |
| 9 |
|
lcfrlem17.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 10 |
|
lcfrlem17.x |
|- ( ph -> X e. ( V \ { .0. } ) ) |
| 11 |
|
lcfrlem17.y |
|- ( ph -> Y e. ( V \ { .0. } ) ) |
| 12 |
|
lcfrlem17.ne |
|- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) |
| 13 |
|
lcfrlem22.b |
|- B = ( ( N ` { X , Y } ) i^i ( ._|_ ` { ( X .+ Y ) } ) ) |
| 14 |
|
lcfrlem24.t |
|- .x. = ( .s ` U ) |
| 15 |
|
lcfrlem24.s |
|- S = ( Scalar ` U ) |
| 16 |
|
lcfrlem24.q |
|- Q = ( 0g ` S ) |
| 17 |
|
lcfrlem24.r |
|- R = ( Base ` S ) |
| 18 |
|
lcfrlem24.j |
|- J = ( x e. ( V \ { .0. } ) |-> ( v e. V |-> ( iota_ k e. R E. w e. ( ._|_ ` { x } ) v = ( w .+ ( k .x. x ) ) ) ) ) |
| 19 |
|
lcfrlem24.ib |
|- ( ph -> I e. B ) |
| 20 |
|
lcfrlem24.l |
|- L = ( LKer ` U ) |
| 21 |
|
lcfrlem25.d |
|- D = ( LDual ` U ) |
| 22 |
|
lcfrlem28.jn |
|- ( ph -> ( ( J ` Y ) ` I ) =/= Q ) |
| 23 |
|
lcfrlem29.i |
|- F = ( invr ` S ) |
| 24 |
|
lcfrlem30.m |
|- .- = ( -g ` D ) |
| 25 |
|
lcfrlem30.c |
|- C = ( ( J ` X ) .- ( ( ( F ` ( ( J ` Y ) ` I ) ) ( .r ` S ) ( ( J ` X ) ` I ) ) ( .s ` D ) ( J ` Y ) ) ) |
| 26 |
|
lcfrlem33.xi |
|- ( ph -> ( ( J ` X ) ` I ) = Q ) |
| 27 |
26
|
oveq2d |
|- ( ph -> ( ( F ` ( ( J ` Y ) ` I ) ) ( .r ` S ) ( ( J ` X ) ` I ) ) = ( ( F ` ( ( J ` Y ) ` I ) ) ( .r ` S ) Q ) ) |
| 28 |
1 3 9
|
dvhlmod |
|- ( ph -> U e. LMod ) |
| 29 |
15
|
lmodring |
|- ( U e. LMod -> S e. Ring ) |
| 30 |
28 29
|
syl |
|- ( ph -> S e. Ring ) |
| 31 |
1 3 9
|
dvhlvec |
|- ( ph -> U e. LVec ) |
| 32 |
15
|
lvecdrng |
|- ( U e. LVec -> S e. DivRing ) |
| 33 |
31 32
|
syl |
|- ( ph -> S e. DivRing ) |
| 34 |
|
eqid |
|- ( LFnl ` U ) = ( LFnl ` U ) |
| 35 |
|
eqid |
|- ( 0g ` D ) = ( 0g ` D ) |
| 36 |
|
eqid |
|- { f e. ( LFnl ` U ) | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } = { f e. ( LFnl ` U ) | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } |
| 37 |
1 2 3 4 5 14 15 17 6 34 20 21 35 36 18 9 11
|
lcfrlem10 |
|- ( ph -> ( J ` Y ) e. ( LFnl ` U ) ) |
| 38 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
lcfrlem22 |
|- ( ph -> B e. A ) |
| 39 |
4 8 28 38
|
lsatssv |
|- ( ph -> B C_ V ) |
| 40 |
39 19
|
sseldd |
|- ( ph -> I e. V ) |
| 41 |
15 17 4 34
|
lflcl |
|- ( ( U e. LMod /\ ( J ` Y ) e. ( LFnl ` U ) /\ I e. V ) -> ( ( J ` Y ) ` I ) e. R ) |
| 42 |
28 37 40 41
|
syl3anc |
|- ( ph -> ( ( J ` Y ) ` I ) e. R ) |
| 43 |
17 16 23
|
drnginvrcl |
|- ( ( S e. DivRing /\ ( ( J ` Y ) ` I ) e. R /\ ( ( J ` Y ) ` I ) =/= Q ) -> ( F ` ( ( J ` Y ) ` I ) ) e. R ) |
| 44 |
33 42 22 43
|
syl3anc |
|- ( ph -> ( F ` ( ( J ` Y ) ` I ) ) e. R ) |
| 45 |
|
eqid |
|- ( .r ` S ) = ( .r ` S ) |
| 46 |
17 45 16
|
ringrz |
|- ( ( S e. Ring /\ ( F ` ( ( J ` Y ) ` I ) ) e. R ) -> ( ( F ` ( ( J ` Y ) ` I ) ) ( .r ` S ) Q ) = Q ) |
| 47 |
30 44 46
|
syl2anc |
|- ( ph -> ( ( F ` ( ( J ` Y ) ` I ) ) ( .r ` S ) Q ) = Q ) |
| 48 |
27 47
|
eqtrd |
|- ( ph -> ( ( F ` ( ( J ` Y ) ` I ) ) ( .r ` S ) ( ( J ` X ) ` I ) ) = Q ) |
| 49 |
48
|
oveq1d |
|- ( ph -> ( ( ( F ` ( ( J ` Y ) ` I ) ) ( .r ` S ) ( ( J ` X ) ` I ) ) ( .s ` D ) ( J ` Y ) ) = ( Q ( .s ` D ) ( J ` Y ) ) ) |
| 50 |
|
eqid |
|- ( .s ` D ) = ( .s ` D ) |
| 51 |
34 15 16 21 50 35 28 37
|
ldual0vs |
|- ( ph -> ( Q ( .s ` D ) ( J ` Y ) ) = ( 0g ` D ) ) |
| 52 |
49 51
|
eqtrd |
|- ( ph -> ( ( ( F ` ( ( J ` Y ) ` I ) ) ( .r ` S ) ( ( J ` X ) ` I ) ) ( .s ` D ) ( J ` Y ) ) = ( 0g ` D ) ) |
| 53 |
52
|
oveq2d |
|- ( ph -> ( ( J ` X ) .- ( ( ( F ` ( ( J ` Y ) ` I ) ) ( .r ` S ) ( ( J ` X ) ` I ) ) ( .s ` D ) ( J ` Y ) ) ) = ( ( J ` X ) .- ( 0g ` D ) ) ) |
| 54 |
21 28
|
ldualgrp |
|- ( ph -> D e. Grp ) |
| 55 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
| 56 |
1 2 3 4 5 14 15 17 6 34 20 21 35 36 18 9 10
|
lcfrlem10 |
|- ( ph -> ( J ` X ) e. ( LFnl ` U ) ) |
| 57 |
34 21 55 28 56
|
ldualelvbase |
|- ( ph -> ( J ` X ) e. ( Base ` D ) ) |
| 58 |
55 35 24
|
grpsubid1 |
|- ( ( D e. Grp /\ ( J ` X ) e. ( Base ` D ) ) -> ( ( J ` X ) .- ( 0g ` D ) ) = ( J ` X ) ) |
| 59 |
54 57 58
|
syl2anc |
|- ( ph -> ( ( J ` X ) .- ( 0g ` D ) ) = ( J ` X ) ) |
| 60 |
53 59
|
eqtrd |
|- ( ph -> ( ( J ` X ) .- ( ( ( F ` ( ( J ` Y ) ` I ) ) ( .r ` S ) ( ( J ` X ) ` I ) ) ( .s ` D ) ( J ` Y ) ) ) = ( J ` X ) ) |
| 61 |
25 60
|
eqtrid |
|- ( ph -> C = ( J ` X ) ) |
| 62 |
1 2 3 4 5 14 15 17 6 34 20 21 35 36 18 9 10
|
lcfrlem13 |
|- ( ph -> ( J ` X ) e. ( { f e. ( LFnl ` U ) | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } \ { ( 0g ` D ) } ) ) |
| 63 |
|
eldifsni |
|- ( ( J ` X ) e. ( { f e. ( LFnl ` U ) | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } \ { ( 0g ` D ) } ) -> ( J ` X ) =/= ( 0g ` D ) ) |
| 64 |
62 63
|
syl |
|- ( ph -> ( J ` X ) =/= ( 0g ` D ) ) |
| 65 |
61 64
|
eqnetrd |
|- ( ph -> C =/= ( 0g ` D ) ) |