Metamath Proof Explorer


Theorem lcfrlem33

Description: Lemma for lcfr . (Contributed by NM, 10-Mar-2015)

Ref Expression
Hypotheses lcfrlem17.h 𝐻 = ( LHyp ‘ 𝐾 )
lcfrlem17.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
lcfrlem17.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
lcfrlem17.v 𝑉 = ( Base ‘ 𝑈 )
lcfrlem17.p + = ( +g𝑈 )
lcfrlem17.z 0 = ( 0g𝑈 )
lcfrlem17.n 𝑁 = ( LSpan ‘ 𝑈 )
lcfrlem17.a 𝐴 = ( LSAtoms ‘ 𝑈 )
lcfrlem17.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
lcfrlem17.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
lcfrlem17.y ( 𝜑𝑌 ∈ ( 𝑉 ∖ { 0 } ) )
lcfrlem17.ne ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) )
lcfrlem22.b 𝐵 = ( ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∩ ( ‘ { ( 𝑋 + 𝑌 ) } ) )
lcfrlem24.t · = ( ·𝑠𝑈 )
lcfrlem24.s 𝑆 = ( Scalar ‘ 𝑈 )
lcfrlem24.q 𝑄 = ( 0g𝑆 )
lcfrlem24.r 𝑅 = ( Base ‘ 𝑆 )
lcfrlem24.j 𝐽 = ( 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ↦ ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑥 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑥 ) ) ) ) )
lcfrlem24.ib ( 𝜑𝐼𝐵 )
lcfrlem24.l 𝐿 = ( LKer ‘ 𝑈 )
lcfrlem25.d 𝐷 = ( LDual ‘ 𝑈 )
lcfrlem28.jn ( 𝜑 → ( ( 𝐽𝑌 ) ‘ 𝐼 ) ≠ 𝑄 )
lcfrlem29.i 𝐹 = ( invr𝑆 )
lcfrlem30.m = ( -g𝐷 )
lcfrlem30.c 𝐶 = ( ( 𝐽𝑋 ) ( ( ( 𝐹 ‘ ( ( 𝐽𝑌 ) ‘ 𝐼 ) ) ( .r𝑆 ) ( ( 𝐽𝑋 ) ‘ 𝐼 ) ) ( ·𝑠𝐷 ) ( 𝐽𝑌 ) ) )
lcfrlem33.xi ( 𝜑 → ( ( 𝐽𝑋 ) ‘ 𝐼 ) = 𝑄 )
Assertion lcfrlem33 ( 𝜑𝐶 ≠ ( 0g𝐷 ) )

Proof

Step Hyp Ref Expression
1 lcfrlem17.h 𝐻 = ( LHyp ‘ 𝐾 )
2 lcfrlem17.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
3 lcfrlem17.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
4 lcfrlem17.v 𝑉 = ( Base ‘ 𝑈 )
5 lcfrlem17.p + = ( +g𝑈 )
6 lcfrlem17.z 0 = ( 0g𝑈 )
7 lcfrlem17.n 𝑁 = ( LSpan ‘ 𝑈 )
8 lcfrlem17.a 𝐴 = ( LSAtoms ‘ 𝑈 )
9 lcfrlem17.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
10 lcfrlem17.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
11 lcfrlem17.y ( 𝜑𝑌 ∈ ( 𝑉 ∖ { 0 } ) )
12 lcfrlem17.ne ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) )
13 lcfrlem22.b 𝐵 = ( ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∩ ( ‘ { ( 𝑋 + 𝑌 ) } ) )
14 lcfrlem24.t · = ( ·𝑠𝑈 )
15 lcfrlem24.s 𝑆 = ( Scalar ‘ 𝑈 )
16 lcfrlem24.q 𝑄 = ( 0g𝑆 )
17 lcfrlem24.r 𝑅 = ( Base ‘ 𝑆 )
18 lcfrlem24.j 𝐽 = ( 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ↦ ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑥 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑥 ) ) ) ) )
19 lcfrlem24.ib ( 𝜑𝐼𝐵 )
20 lcfrlem24.l 𝐿 = ( LKer ‘ 𝑈 )
21 lcfrlem25.d 𝐷 = ( LDual ‘ 𝑈 )
22 lcfrlem28.jn ( 𝜑 → ( ( 𝐽𝑌 ) ‘ 𝐼 ) ≠ 𝑄 )
23 lcfrlem29.i 𝐹 = ( invr𝑆 )
24 lcfrlem30.m = ( -g𝐷 )
25 lcfrlem30.c 𝐶 = ( ( 𝐽𝑋 ) ( ( ( 𝐹 ‘ ( ( 𝐽𝑌 ) ‘ 𝐼 ) ) ( .r𝑆 ) ( ( 𝐽𝑋 ) ‘ 𝐼 ) ) ( ·𝑠𝐷 ) ( 𝐽𝑌 ) ) )
26 lcfrlem33.xi ( 𝜑 → ( ( 𝐽𝑋 ) ‘ 𝐼 ) = 𝑄 )
27 26 oveq2d ( 𝜑 → ( ( 𝐹 ‘ ( ( 𝐽𝑌 ) ‘ 𝐼 ) ) ( .r𝑆 ) ( ( 𝐽𝑋 ) ‘ 𝐼 ) ) = ( ( 𝐹 ‘ ( ( 𝐽𝑌 ) ‘ 𝐼 ) ) ( .r𝑆 ) 𝑄 ) )
28 1 3 9 dvhlmod ( 𝜑𝑈 ∈ LMod )
29 15 lmodring ( 𝑈 ∈ LMod → 𝑆 ∈ Ring )
30 28 29 syl ( 𝜑𝑆 ∈ Ring )
31 1 3 9 dvhlvec ( 𝜑𝑈 ∈ LVec )
32 15 lvecdrng ( 𝑈 ∈ LVec → 𝑆 ∈ DivRing )
33 31 32 syl ( 𝜑𝑆 ∈ DivRing )
34 eqid ( LFnl ‘ 𝑈 ) = ( LFnl ‘ 𝑈 )
35 eqid ( 0g𝐷 ) = ( 0g𝐷 )
36 eqid { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ‘ ( ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) } = { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ‘ ( ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) }
37 1 2 3 4 5 14 15 17 6 34 20 21 35 36 18 9 11 lcfrlem10 ( 𝜑 → ( 𝐽𝑌 ) ∈ ( LFnl ‘ 𝑈 ) )
38 1 2 3 4 5 6 7 8 9 10 11 12 13 lcfrlem22 ( 𝜑𝐵𝐴 )
39 4 8 28 38 lsatssv ( 𝜑𝐵𝑉 )
40 39 19 sseldd ( 𝜑𝐼𝑉 )
41 15 17 4 34 lflcl ( ( 𝑈 ∈ LMod ∧ ( 𝐽𝑌 ) ∈ ( LFnl ‘ 𝑈 ) ∧ 𝐼𝑉 ) → ( ( 𝐽𝑌 ) ‘ 𝐼 ) ∈ 𝑅 )
42 28 37 40 41 syl3anc ( 𝜑 → ( ( 𝐽𝑌 ) ‘ 𝐼 ) ∈ 𝑅 )
43 17 16 23 drnginvrcl ( ( 𝑆 ∈ DivRing ∧ ( ( 𝐽𝑌 ) ‘ 𝐼 ) ∈ 𝑅 ∧ ( ( 𝐽𝑌 ) ‘ 𝐼 ) ≠ 𝑄 ) → ( 𝐹 ‘ ( ( 𝐽𝑌 ) ‘ 𝐼 ) ) ∈ 𝑅 )
44 33 42 22 43 syl3anc ( 𝜑 → ( 𝐹 ‘ ( ( 𝐽𝑌 ) ‘ 𝐼 ) ) ∈ 𝑅 )
45 eqid ( .r𝑆 ) = ( .r𝑆 )
46 17 45 16 ringrz ( ( 𝑆 ∈ Ring ∧ ( 𝐹 ‘ ( ( 𝐽𝑌 ) ‘ 𝐼 ) ) ∈ 𝑅 ) → ( ( 𝐹 ‘ ( ( 𝐽𝑌 ) ‘ 𝐼 ) ) ( .r𝑆 ) 𝑄 ) = 𝑄 )
47 30 44 46 syl2anc ( 𝜑 → ( ( 𝐹 ‘ ( ( 𝐽𝑌 ) ‘ 𝐼 ) ) ( .r𝑆 ) 𝑄 ) = 𝑄 )
48 27 47 eqtrd ( 𝜑 → ( ( 𝐹 ‘ ( ( 𝐽𝑌 ) ‘ 𝐼 ) ) ( .r𝑆 ) ( ( 𝐽𝑋 ) ‘ 𝐼 ) ) = 𝑄 )
49 48 oveq1d ( 𝜑 → ( ( ( 𝐹 ‘ ( ( 𝐽𝑌 ) ‘ 𝐼 ) ) ( .r𝑆 ) ( ( 𝐽𝑋 ) ‘ 𝐼 ) ) ( ·𝑠𝐷 ) ( 𝐽𝑌 ) ) = ( 𝑄 ( ·𝑠𝐷 ) ( 𝐽𝑌 ) ) )
50 eqid ( ·𝑠𝐷 ) = ( ·𝑠𝐷 )
51 34 15 16 21 50 35 28 37 ldual0vs ( 𝜑 → ( 𝑄 ( ·𝑠𝐷 ) ( 𝐽𝑌 ) ) = ( 0g𝐷 ) )
52 49 51 eqtrd ( 𝜑 → ( ( ( 𝐹 ‘ ( ( 𝐽𝑌 ) ‘ 𝐼 ) ) ( .r𝑆 ) ( ( 𝐽𝑋 ) ‘ 𝐼 ) ) ( ·𝑠𝐷 ) ( 𝐽𝑌 ) ) = ( 0g𝐷 ) )
53 52 oveq2d ( 𝜑 → ( ( 𝐽𝑋 ) ( ( ( 𝐹 ‘ ( ( 𝐽𝑌 ) ‘ 𝐼 ) ) ( .r𝑆 ) ( ( 𝐽𝑋 ) ‘ 𝐼 ) ) ( ·𝑠𝐷 ) ( 𝐽𝑌 ) ) ) = ( ( 𝐽𝑋 ) ( 0g𝐷 ) ) )
54 21 28 ldualgrp ( 𝜑𝐷 ∈ Grp )
55 eqid ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 )
56 1 2 3 4 5 14 15 17 6 34 20 21 35 36 18 9 10 lcfrlem10 ( 𝜑 → ( 𝐽𝑋 ) ∈ ( LFnl ‘ 𝑈 ) )
57 34 21 55 28 56 ldualelvbase ( 𝜑 → ( 𝐽𝑋 ) ∈ ( Base ‘ 𝐷 ) )
58 55 35 24 grpsubid1 ( ( 𝐷 ∈ Grp ∧ ( 𝐽𝑋 ) ∈ ( Base ‘ 𝐷 ) ) → ( ( 𝐽𝑋 ) ( 0g𝐷 ) ) = ( 𝐽𝑋 ) )
59 54 57 58 syl2anc ( 𝜑 → ( ( 𝐽𝑋 ) ( 0g𝐷 ) ) = ( 𝐽𝑋 ) )
60 53 59 eqtrd ( 𝜑 → ( ( 𝐽𝑋 ) ( ( ( 𝐹 ‘ ( ( 𝐽𝑌 ) ‘ 𝐼 ) ) ( .r𝑆 ) ( ( 𝐽𝑋 ) ‘ 𝐼 ) ) ( ·𝑠𝐷 ) ( 𝐽𝑌 ) ) ) = ( 𝐽𝑋 ) )
61 25 60 syl5eq ( 𝜑𝐶 = ( 𝐽𝑋 ) )
62 1 2 3 4 5 14 15 17 6 34 20 21 35 36 18 9 10 lcfrlem13 ( 𝜑 → ( 𝐽𝑋 ) ∈ ( { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ‘ ( ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) } ∖ { ( 0g𝐷 ) } ) )
63 eldifsni ( ( 𝐽𝑋 ) ∈ ( { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ‘ ( ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) } ∖ { ( 0g𝐷 ) } ) → ( 𝐽𝑋 ) ≠ ( 0g𝐷 ) )
64 62 63 syl ( 𝜑 → ( 𝐽𝑋 ) ≠ ( 0g𝐷 ) )
65 61 64 eqnetrd ( 𝜑𝐶 ≠ ( 0g𝐷 ) )