Metamath Proof Explorer


Theorem lcfrlem33

Description: Lemma for lcfr . (Contributed by NM, 10-Mar-2015)

Ref Expression
Hypotheses lcfrlem17.h H=LHypK
lcfrlem17.o ˙=ocHKW
lcfrlem17.u U=DVecHKW
lcfrlem17.v V=BaseU
lcfrlem17.p +˙=+U
lcfrlem17.z 0˙=0U
lcfrlem17.n N=LSpanU
lcfrlem17.a A=LSAtomsU
lcfrlem17.k φKHLWH
lcfrlem17.x φXV0˙
lcfrlem17.y φYV0˙
lcfrlem17.ne φNXNY
lcfrlem22.b B=NXY˙X+˙Y
lcfrlem24.t ·˙=U
lcfrlem24.s S=ScalarU
lcfrlem24.q Q=0S
lcfrlem24.r R=BaseS
lcfrlem24.j J=xV0˙vVιkR|w˙xv=w+˙k·˙x
lcfrlem24.ib φIB
lcfrlem24.l L=LKerU
lcfrlem25.d D=LDualU
lcfrlem28.jn φJYIQ
lcfrlem29.i F=invrS
lcfrlem30.m -˙=-D
lcfrlem30.c C=JX-˙FJYISJXIDJY
lcfrlem33.xi φJXI=Q
Assertion lcfrlem33 φC0D

Proof

Step Hyp Ref Expression
1 lcfrlem17.h H=LHypK
2 lcfrlem17.o ˙=ocHKW
3 lcfrlem17.u U=DVecHKW
4 lcfrlem17.v V=BaseU
5 lcfrlem17.p +˙=+U
6 lcfrlem17.z 0˙=0U
7 lcfrlem17.n N=LSpanU
8 lcfrlem17.a A=LSAtomsU
9 lcfrlem17.k φKHLWH
10 lcfrlem17.x φXV0˙
11 lcfrlem17.y φYV0˙
12 lcfrlem17.ne φNXNY
13 lcfrlem22.b B=NXY˙X+˙Y
14 lcfrlem24.t ·˙=U
15 lcfrlem24.s S=ScalarU
16 lcfrlem24.q Q=0S
17 lcfrlem24.r R=BaseS
18 lcfrlem24.j J=xV0˙vVιkR|w˙xv=w+˙k·˙x
19 lcfrlem24.ib φIB
20 lcfrlem24.l L=LKerU
21 lcfrlem25.d D=LDualU
22 lcfrlem28.jn φJYIQ
23 lcfrlem29.i F=invrS
24 lcfrlem30.m -˙=-D
25 lcfrlem30.c C=JX-˙FJYISJXIDJY
26 lcfrlem33.xi φJXI=Q
27 26 oveq2d φFJYISJXI=FJYISQ
28 1 3 9 dvhlmod φULMod
29 15 lmodring ULModSRing
30 28 29 syl φSRing
31 1 3 9 dvhlvec φULVec
32 15 lvecdrng ULVecSDivRing
33 31 32 syl φSDivRing
34 eqid LFnlU=LFnlU
35 eqid 0D=0D
36 eqid fLFnlU|˙˙Lf=Lf=fLFnlU|˙˙Lf=Lf
37 1 2 3 4 5 14 15 17 6 34 20 21 35 36 18 9 11 lcfrlem10 φJYLFnlU
38 1 2 3 4 5 6 7 8 9 10 11 12 13 lcfrlem22 φBA
39 4 8 28 38 lsatssv φBV
40 39 19 sseldd φIV
41 15 17 4 34 lflcl ULModJYLFnlUIVJYIR
42 28 37 40 41 syl3anc φJYIR
43 17 16 23 drnginvrcl SDivRingJYIRJYIQFJYIR
44 33 42 22 43 syl3anc φFJYIR
45 eqid S=S
46 17 45 16 ringrz SRingFJYIRFJYISQ=Q
47 30 44 46 syl2anc φFJYISQ=Q
48 27 47 eqtrd φFJYISJXI=Q
49 48 oveq1d φFJYISJXIDJY=QDJY
50 eqid D=D
51 34 15 16 21 50 35 28 37 ldual0vs φQDJY=0D
52 49 51 eqtrd φFJYISJXIDJY=0D
53 52 oveq2d φJX-˙FJYISJXIDJY=JX-˙0D
54 21 28 ldualgrp φDGrp
55 eqid BaseD=BaseD
56 1 2 3 4 5 14 15 17 6 34 20 21 35 36 18 9 10 lcfrlem10 φJXLFnlU
57 34 21 55 28 56 ldualelvbase φJXBaseD
58 55 35 24 grpsubid1 DGrpJXBaseDJX-˙0D=JX
59 54 57 58 syl2anc φJX-˙0D=JX
60 53 59 eqtrd φJX-˙FJYISJXIDJY=JX
61 25 60 eqtrid φC=JX
62 1 2 3 4 5 14 15 17 6 34 20 21 35 36 18 9 10 lcfrlem13 φJXfLFnlU|˙˙Lf=Lf0D
63 eldifsni JXfLFnlU|˙˙Lf=Lf0DJX0D
64 62 63 syl φJX0D
65 61 64 eqnetrd φC0D