Description: Lemma for lcfr . (Contributed by NM, 10-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lcfrlem17.h | |
|
lcfrlem17.o | |
||
lcfrlem17.u | |
||
lcfrlem17.v | |
||
lcfrlem17.p | |
||
lcfrlem17.z | |
||
lcfrlem17.n | |
||
lcfrlem17.a | |
||
lcfrlem17.k | |
||
lcfrlem17.x | |
||
lcfrlem17.y | |
||
lcfrlem17.ne | |
||
lcfrlem22.b | |
||
lcfrlem24.t | |
||
lcfrlem24.s | |
||
lcfrlem24.q | |
||
lcfrlem24.r | |
||
lcfrlem24.j | |
||
lcfrlem24.ib | |
||
lcfrlem24.l | |
||
lcfrlem25.d | |
||
lcfrlem28.jn | |
||
lcfrlem29.i | |
||
lcfrlem30.m | |
||
lcfrlem30.c | |
||
lcfrlem33.xi | |
||
Assertion | lcfrlem33 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcfrlem17.h | |
|
2 | lcfrlem17.o | |
|
3 | lcfrlem17.u | |
|
4 | lcfrlem17.v | |
|
5 | lcfrlem17.p | |
|
6 | lcfrlem17.z | |
|
7 | lcfrlem17.n | |
|
8 | lcfrlem17.a | |
|
9 | lcfrlem17.k | |
|
10 | lcfrlem17.x | |
|
11 | lcfrlem17.y | |
|
12 | lcfrlem17.ne | |
|
13 | lcfrlem22.b | |
|
14 | lcfrlem24.t | |
|
15 | lcfrlem24.s | |
|
16 | lcfrlem24.q | |
|
17 | lcfrlem24.r | |
|
18 | lcfrlem24.j | |
|
19 | lcfrlem24.ib | |
|
20 | lcfrlem24.l | |
|
21 | lcfrlem25.d | |
|
22 | lcfrlem28.jn | |
|
23 | lcfrlem29.i | |
|
24 | lcfrlem30.m | |
|
25 | lcfrlem30.c | |
|
26 | lcfrlem33.xi | |
|
27 | 26 | oveq2d | |
28 | 1 3 9 | dvhlmod | |
29 | 15 | lmodring | |
30 | 28 29 | syl | |
31 | 1 3 9 | dvhlvec | |
32 | 15 | lvecdrng | |
33 | 31 32 | syl | |
34 | eqid | |
|
35 | eqid | |
|
36 | eqid | |
|
37 | 1 2 3 4 5 14 15 17 6 34 20 21 35 36 18 9 11 | lcfrlem10 | |
38 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | lcfrlem22 | |
39 | 4 8 28 38 | lsatssv | |
40 | 39 19 | sseldd | |
41 | 15 17 4 34 | lflcl | |
42 | 28 37 40 41 | syl3anc | |
43 | 17 16 23 | drnginvrcl | |
44 | 33 42 22 43 | syl3anc | |
45 | eqid | |
|
46 | 17 45 16 | ringrz | |
47 | 30 44 46 | syl2anc | |
48 | 27 47 | eqtrd | |
49 | 48 | oveq1d | |
50 | eqid | |
|
51 | 34 15 16 21 50 35 28 37 | ldual0vs | |
52 | 49 51 | eqtrd | |
53 | 52 | oveq2d | |
54 | 21 28 | ldualgrp | |
55 | eqid | |
|
56 | 1 2 3 4 5 14 15 17 6 34 20 21 35 36 18 9 10 | lcfrlem10 | |
57 | 34 21 55 28 56 | ldualelvbase | |
58 | 55 35 24 | grpsubid1 | |
59 | 54 57 58 | syl2anc | |
60 | 53 59 | eqtrd | |
61 | 25 60 | eqtrid | |
62 | 1 2 3 4 5 14 15 17 6 34 20 21 35 36 18 9 10 | lcfrlem13 | |
63 | eldifsni | |
|
64 | 62 63 | syl | |
65 | 61 64 | eqnetrd | |