Metamath Proof Explorer


Theorem lcfrlem34

Description: Lemma for lcfr . (Contributed by NM, 10-Mar-2015)

Ref Expression
Hypotheses lcfrlem17.h H = LHyp K
lcfrlem17.o ˙ = ocH K W
lcfrlem17.u U = DVecH K W
lcfrlem17.v V = Base U
lcfrlem17.p + ˙ = + U
lcfrlem17.z 0 ˙ = 0 U
lcfrlem17.n N = LSpan U
lcfrlem17.a A = LSAtoms U
lcfrlem17.k φ K HL W H
lcfrlem17.x φ X V 0 ˙
lcfrlem17.y φ Y V 0 ˙
lcfrlem17.ne φ N X N Y
lcfrlem22.b B = N X Y ˙ X + ˙ Y
lcfrlem24.t · ˙ = U
lcfrlem24.s S = Scalar U
lcfrlem24.q Q = 0 S
lcfrlem24.r R = Base S
lcfrlem24.j J = x V 0 ˙ v V ι k R | w ˙ x v = w + ˙ k · ˙ x
lcfrlem24.ib φ I B
lcfrlem24.l L = LKer U
lcfrlem25.d D = LDual U
lcfrlem28.jn φ J Y I Q
lcfrlem29.i F = inv r S
lcfrlem30.m - ˙ = - D
lcfrlem30.c C = J X - ˙ F J Y I S J X I D J Y
Assertion lcfrlem34 φ C 0 D

Proof

Step Hyp Ref Expression
1 lcfrlem17.h H = LHyp K
2 lcfrlem17.o ˙ = ocH K W
3 lcfrlem17.u U = DVecH K W
4 lcfrlem17.v V = Base U
5 lcfrlem17.p + ˙ = + U
6 lcfrlem17.z 0 ˙ = 0 U
7 lcfrlem17.n N = LSpan U
8 lcfrlem17.a A = LSAtoms U
9 lcfrlem17.k φ K HL W H
10 lcfrlem17.x φ X V 0 ˙
11 lcfrlem17.y φ Y V 0 ˙
12 lcfrlem17.ne φ N X N Y
13 lcfrlem22.b B = N X Y ˙ X + ˙ Y
14 lcfrlem24.t · ˙ = U
15 lcfrlem24.s S = Scalar U
16 lcfrlem24.q Q = 0 S
17 lcfrlem24.r R = Base S
18 lcfrlem24.j J = x V 0 ˙ v V ι k R | w ˙ x v = w + ˙ k · ˙ x
19 lcfrlem24.ib φ I B
20 lcfrlem24.l L = LKer U
21 lcfrlem25.d D = LDual U
22 lcfrlem28.jn φ J Y I Q
23 lcfrlem29.i F = inv r S
24 lcfrlem30.m - ˙ = - D
25 lcfrlem30.c C = J X - ˙ F J Y I S J X I D J Y
26 9 adantr φ J X I = Q K HL W H
27 10 adantr φ J X I = Q X V 0 ˙
28 11 adantr φ J X I = Q Y V 0 ˙
29 12 adantr φ J X I = Q N X N Y
30 19 adantr φ J X I = Q I B
31 22 adantr φ J X I = Q J Y I Q
32 simpr φ J X I = Q J X I = Q
33 1 2 3 4 5 6 7 8 26 27 28 29 13 14 15 16 17 18 30 20 21 31 23 24 25 32 lcfrlem33 φ J X I = Q C 0 D
34 9 adantr φ J X I Q K HL W H
35 10 adantr φ J X I Q X V 0 ˙
36 11 adantr φ J X I Q Y V 0 ˙
37 12 adantr φ J X I Q N X N Y
38 19 adantr φ J X I Q I B
39 22 adantr φ J X I Q J Y I Q
40 simpr φ J X I Q J X I Q
41 1 2 3 4 5 6 7 8 34 35 36 37 13 14 15 16 17 18 38 20 21 39 23 24 25 40 lcfrlem32 φ J X I Q C 0 D
42 33 41 pm2.61dane φ C 0 D