Step |
Hyp |
Ref |
Expression |
1 |
|
lcfrlem17.h |
|
2 |
|
lcfrlem17.o |
|
3 |
|
lcfrlem17.u |
|
4 |
|
lcfrlem17.v |
|
5 |
|
lcfrlem17.p |
|
6 |
|
lcfrlem17.z |
|
7 |
|
lcfrlem17.n |
|
8 |
|
lcfrlem17.a |
|
9 |
|
lcfrlem17.k |
|
10 |
|
lcfrlem17.x |
|
11 |
|
lcfrlem17.y |
|
12 |
|
lcfrlem17.ne |
|
13 |
|
lcfrlem22.b |
|
14 |
|
lcfrlem24.t |
|
15 |
|
lcfrlem24.s |
|
16 |
|
lcfrlem24.q |
|
17 |
|
lcfrlem24.r |
|
18 |
|
lcfrlem24.j |
|
19 |
|
lcfrlem24.ib |
|
20 |
|
lcfrlem24.l |
|
21 |
|
lcfrlem25.d |
|
22 |
|
lcfrlem28.jn |
|
23 |
|
lcfrlem29.i |
|
24 |
|
lcfrlem30.m |
|
25 |
|
lcfrlem30.c |
|
26 |
|
lcfrlem31.xi |
|
27 |
9
|
adantr |
|
28 |
10
|
adantr |
|
29 |
11
|
adantr |
|
30 |
12
|
adantr |
|
31 |
19
|
adantr |
|
32 |
22
|
adantr |
|
33 |
26
|
adantr |
|
34 |
|
simpr |
|
35 |
1 2 3 4 5 6 7 8 27 28 29 30 13 14 15 16 17 18 31 20 21 32 23 24 25 33 34
|
lcfrlem31 |
|
36 |
35
|
ex |
|
37 |
36
|
necon3d |
|
38 |
12 37
|
mpd |
|