Metamath Proof Explorer


Theorem lcfrlem32

Description: Lemma for lcfr . (Contributed by NM, 10-Mar-2015)

Ref Expression
Hypotheses lcfrlem17.h H = LHyp K
lcfrlem17.o ˙ = ocH K W
lcfrlem17.u U = DVecH K W
lcfrlem17.v V = Base U
lcfrlem17.p + ˙ = + U
lcfrlem17.z 0 ˙ = 0 U
lcfrlem17.n N = LSpan U
lcfrlem17.a A = LSAtoms U
lcfrlem17.k φ K HL W H
lcfrlem17.x φ X V 0 ˙
lcfrlem17.y φ Y V 0 ˙
lcfrlem17.ne φ N X N Y
lcfrlem22.b B = N X Y ˙ X + ˙ Y
lcfrlem24.t · ˙ = U
lcfrlem24.s S = Scalar U
lcfrlem24.q Q = 0 S
lcfrlem24.r R = Base S
lcfrlem24.j J = x V 0 ˙ v V ι k R | w ˙ x v = w + ˙ k · ˙ x
lcfrlem24.ib φ I B
lcfrlem24.l L = LKer U
lcfrlem25.d D = LDual U
lcfrlem28.jn φ J Y I Q
lcfrlem29.i F = inv r S
lcfrlem30.m - ˙ = - D
lcfrlem30.c C = J X - ˙ F J Y I S J X I D J Y
lcfrlem31.xi φ J X I Q
Assertion lcfrlem32 φ C 0 D

Proof

Step Hyp Ref Expression
1 lcfrlem17.h H = LHyp K
2 lcfrlem17.o ˙ = ocH K W
3 lcfrlem17.u U = DVecH K W
4 lcfrlem17.v V = Base U
5 lcfrlem17.p + ˙ = + U
6 lcfrlem17.z 0 ˙ = 0 U
7 lcfrlem17.n N = LSpan U
8 lcfrlem17.a A = LSAtoms U
9 lcfrlem17.k φ K HL W H
10 lcfrlem17.x φ X V 0 ˙
11 lcfrlem17.y φ Y V 0 ˙
12 lcfrlem17.ne φ N X N Y
13 lcfrlem22.b B = N X Y ˙ X + ˙ Y
14 lcfrlem24.t · ˙ = U
15 lcfrlem24.s S = Scalar U
16 lcfrlem24.q Q = 0 S
17 lcfrlem24.r R = Base S
18 lcfrlem24.j J = x V 0 ˙ v V ι k R | w ˙ x v = w + ˙ k · ˙ x
19 lcfrlem24.ib φ I B
20 lcfrlem24.l L = LKer U
21 lcfrlem25.d D = LDual U
22 lcfrlem28.jn φ J Y I Q
23 lcfrlem29.i F = inv r S
24 lcfrlem30.m - ˙ = - D
25 lcfrlem30.c C = J X - ˙ F J Y I S J X I D J Y
26 lcfrlem31.xi φ J X I Q
27 9 adantr φ C = 0 D K HL W H
28 10 adantr φ C = 0 D X V 0 ˙
29 11 adantr φ C = 0 D Y V 0 ˙
30 12 adantr φ C = 0 D N X N Y
31 19 adantr φ C = 0 D I B
32 22 adantr φ C = 0 D J Y I Q
33 26 adantr φ C = 0 D J X I Q
34 simpr φ C = 0 D C = 0 D
35 1 2 3 4 5 6 7 8 27 28 29 30 13 14 15 16 17 18 31 20 21 32 23 24 25 33 34 lcfrlem31 φ C = 0 D N X = N Y
36 35 ex φ C = 0 D N X = N Y
37 36 necon3d φ N X N Y C 0 D
38 12 37 mpd φ C 0 D