Metamath Proof Explorer


Theorem lcfrlem32

Description: Lemma for lcfr . (Contributed by NM, 10-Mar-2015)

Ref Expression
Hypotheses lcfrlem17.h 𝐻 = ( LHyp ‘ 𝐾 )
lcfrlem17.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
lcfrlem17.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
lcfrlem17.v 𝑉 = ( Base ‘ 𝑈 )
lcfrlem17.p + = ( +g𝑈 )
lcfrlem17.z 0 = ( 0g𝑈 )
lcfrlem17.n 𝑁 = ( LSpan ‘ 𝑈 )
lcfrlem17.a 𝐴 = ( LSAtoms ‘ 𝑈 )
lcfrlem17.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
lcfrlem17.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
lcfrlem17.y ( 𝜑𝑌 ∈ ( 𝑉 ∖ { 0 } ) )
lcfrlem17.ne ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) )
lcfrlem22.b 𝐵 = ( ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∩ ( ‘ { ( 𝑋 + 𝑌 ) } ) )
lcfrlem24.t · = ( ·𝑠𝑈 )
lcfrlem24.s 𝑆 = ( Scalar ‘ 𝑈 )
lcfrlem24.q 𝑄 = ( 0g𝑆 )
lcfrlem24.r 𝑅 = ( Base ‘ 𝑆 )
lcfrlem24.j 𝐽 = ( 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ↦ ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑥 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑥 ) ) ) ) )
lcfrlem24.ib ( 𝜑𝐼𝐵 )
lcfrlem24.l 𝐿 = ( LKer ‘ 𝑈 )
lcfrlem25.d 𝐷 = ( LDual ‘ 𝑈 )
lcfrlem28.jn ( 𝜑 → ( ( 𝐽𝑌 ) ‘ 𝐼 ) ≠ 𝑄 )
lcfrlem29.i 𝐹 = ( invr𝑆 )
lcfrlem30.m = ( -g𝐷 )
lcfrlem30.c 𝐶 = ( ( 𝐽𝑋 ) ( ( ( 𝐹 ‘ ( ( 𝐽𝑌 ) ‘ 𝐼 ) ) ( .r𝑆 ) ( ( 𝐽𝑋 ) ‘ 𝐼 ) ) ( ·𝑠𝐷 ) ( 𝐽𝑌 ) ) )
lcfrlem31.xi ( 𝜑 → ( ( 𝐽𝑋 ) ‘ 𝐼 ) ≠ 𝑄 )
Assertion lcfrlem32 ( 𝜑𝐶 ≠ ( 0g𝐷 ) )

Proof

Step Hyp Ref Expression
1 lcfrlem17.h 𝐻 = ( LHyp ‘ 𝐾 )
2 lcfrlem17.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
3 lcfrlem17.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
4 lcfrlem17.v 𝑉 = ( Base ‘ 𝑈 )
5 lcfrlem17.p + = ( +g𝑈 )
6 lcfrlem17.z 0 = ( 0g𝑈 )
7 lcfrlem17.n 𝑁 = ( LSpan ‘ 𝑈 )
8 lcfrlem17.a 𝐴 = ( LSAtoms ‘ 𝑈 )
9 lcfrlem17.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
10 lcfrlem17.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
11 lcfrlem17.y ( 𝜑𝑌 ∈ ( 𝑉 ∖ { 0 } ) )
12 lcfrlem17.ne ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) )
13 lcfrlem22.b 𝐵 = ( ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∩ ( ‘ { ( 𝑋 + 𝑌 ) } ) )
14 lcfrlem24.t · = ( ·𝑠𝑈 )
15 lcfrlem24.s 𝑆 = ( Scalar ‘ 𝑈 )
16 lcfrlem24.q 𝑄 = ( 0g𝑆 )
17 lcfrlem24.r 𝑅 = ( Base ‘ 𝑆 )
18 lcfrlem24.j 𝐽 = ( 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ↦ ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑥 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑥 ) ) ) ) )
19 lcfrlem24.ib ( 𝜑𝐼𝐵 )
20 lcfrlem24.l 𝐿 = ( LKer ‘ 𝑈 )
21 lcfrlem25.d 𝐷 = ( LDual ‘ 𝑈 )
22 lcfrlem28.jn ( 𝜑 → ( ( 𝐽𝑌 ) ‘ 𝐼 ) ≠ 𝑄 )
23 lcfrlem29.i 𝐹 = ( invr𝑆 )
24 lcfrlem30.m = ( -g𝐷 )
25 lcfrlem30.c 𝐶 = ( ( 𝐽𝑋 ) ( ( ( 𝐹 ‘ ( ( 𝐽𝑌 ) ‘ 𝐼 ) ) ( .r𝑆 ) ( ( 𝐽𝑋 ) ‘ 𝐼 ) ) ( ·𝑠𝐷 ) ( 𝐽𝑌 ) ) )
26 lcfrlem31.xi ( 𝜑 → ( ( 𝐽𝑋 ) ‘ 𝐼 ) ≠ 𝑄 )
27 9 adantr ( ( 𝜑𝐶 = ( 0g𝐷 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
28 10 adantr ( ( 𝜑𝐶 = ( 0g𝐷 ) ) → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
29 11 adantr ( ( 𝜑𝐶 = ( 0g𝐷 ) ) → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) )
30 12 adantr ( ( 𝜑𝐶 = ( 0g𝐷 ) ) → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) )
31 19 adantr ( ( 𝜑𝐶 = ( 0g𝐷 ) ) → 𝐼𝐵 )
32 22 adantr ( ( 𝜑𝐶 = ( 0g𝐷 ) ) → ( ( 𝐽𝑌 ) ‘ 𝐼 ) ≠ 𝑄 )
33 26 adantr ( ( 𝜑𝐶 = ( 0g𝐷 ) ) → ( ( 𝐽𝑋 ) ‘ 𝐼 ) ≠ 𝑄 )
34 simpr ( ( 𝜑𝐶 = ( 0g𝐷 ) ) → 𝐶 = ( 0g𝐷 ) )
35 1 2 3 4 5 6 7 8 27 28 29 30 13 14 15 16 17 18 31 20 21 32 23 24 25 33 34 lcfrlem31 ( ( 𝜑𝐶 = ( 0g𝐷 ) ) → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) )
36 35 ex ( 𝜑 → ( 𝐶 = ( 0g𝐷 ) → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) )
37 36 necon3d ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) → 𝐶 ≠ ( 0g𝐷 ) ) )
38 12 37 mpd ( 𝜑𝐶 ≠ ( 0g𝐷 ) )