Metamath Proof Explorer


Theorem lcfrlem35

Description: Lemma for lcfr . (Contributed by NM, 2-Mar-2015)

Ref Expression
Hypotheses lcfrlem17.h H = LHyp K
lcfrlem17.o ˙ = ocH K W
lcfrlem17.u U = DVecH K W
lcfrlem17.v V = Base U
lcfrlem17.p + ˙ = + U
lcfrlem17.z 0 ˙ = 0 U
lcfrlem17.n N = LSpan U
lcfrlem17.a A = LSAtoms U
lcfrlem17.k φ K HL W H
lcfrlem17.x φ X V 0 ˙
lcfrlem17.y φ Y V 0 ˙
lcfrlem17.ne φ N X N Y
lcfrlem22.b B = N X Y ˙ X + ˙ Y
lcfrlem24.t · ˙ = U
lcfrlem24.s S = Scalar U
lcfrlem24.q Q = 0 S
lcfrlem24.r R = Base S
lcfrlem24.j J = x V 0 ˙ v V ι k R | w ˙ x v = w + ˙ k · ˙ x
lcfrlem24.ib φ I B
lcfrlem24.l L = LKer U
lcfrlem25.d D = LDual U
lcfrlem28.jn φ J Y I Q
lcfrlem29.i F = inv r S
lcfrlem30.m - ˙ = - D
lcfrlem30.c C = J X - ˙ F J Y I S J X I D J Y
Assertion lcfrlem35 φ ˙ X + ˙ Y = L C

Proof

Step Hyp Ref Expression
1 lcfrlem17.h H = LHyp K
2 lcfrlem17.o ˙ = ocH K W
3 lcfrlem17.u U = DVecH K W
4 lcfrlem17.v V = Base U
5 lcfrlem17.p + ˙ = + U
6 lcfrlem17.z 0 ˙ = 0 U
7 lcfrlem17.n N = LSpan U
8 lcfrlem17.a A = LSAtoms U
9 lcfrlem17.k φ K HL W H
10 lcfrlem17.x φ X V 0 ˙
11 lcfrlem17.y φ Y V 0 ˙
12 lcfrlem17.ne φ N X N Y
13 lcfrlem22.b B = N X Y ˙ X + ˙ Y
14 lcfrlem24.t · ˙ = U
15 lcfrlem24.s S = Scalar U
16 lcfrlem24.q Q = 0 S
17 lcfrlem24.r R = Base S
18 lcfrlem24.j J = x V 0 ˙ v V ι k R | w ˙ x v = w + ˙ k · ˙ x
19 lcfrlem24.ib φ I B
20 lcfrlem24.l L = LKer U
21 lcfrlem25.d D = LDual U
22 lcfrlem28.jn φ J Y I Q
23 lcfrlem29.i F = inv r S
24 lcfrlem30.m - ˙ = - D
25 lcfrlem30.c C = J X - ˙ F J Y I S J X I D J Y
26 eqid LSSum U = LSSum U
27 1 2 3 4 5 6 7 8 9 10 11 12 13 26 lcfrlem23 φ ˙ X Y LSSum U B = ˙ X + ˙ Y
28 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 lcfrlem24 φ ˙ X Y = L J X L J Y
29 eqid S = S
30 eqid LFnl U = LFnl U
31 eqid D = D
32 1 3 9 dvhlvec φ U LVec
33 eqid 0 D = 0 D
34 eqid f LFnl U | ˙ ˙ L f = L f = f LFnl U | ˙ ˙ L f = L f
35 1 2 3 4 5 14 15 17 6 30 20 21 33 34 18 9 10 lcfrlem10 φ J X LFnl U
36 1 2 3 4 5 14 15 17 6 30 20 21 33 34 18 9 11 lcfrlem10 φ J Y LFnl U
37 eqid LSubSp U = LSubSp U
38 1 3 9 dvhlmod φ U LMod
39 1 2 3 4 5 6 7 8 9 10 11 12 13 lcfrlem22 φ B A
40 37 8 38 39 lsatlssel φ B LSubSp U
41 4 37 lssel B LSubSp U I B I V
42 40 19 41 syl2anc φ I V
43 4 15 29 16 23 30 21 31 24 32 35 36 42 22 25 20 lcfrlem2 φ L J X L J Y L C
44 28 43 eqsstrd φ ˙ X Y L C
45 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 lcfrlem28 φ I 0 ˙
46 6 7 8 32 39 19 45 lsatel φ B = N I
47 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 lcfrlem30 φ C LFnl U
48 30 20 37 lkrlss U LMod C LFnl U L C LSubSp U
49 38 47 48 syl2anc φ L C LSubSp U
50 4 15 29 16 23 30 21 31 24 32 35 36 42 22 25 20 lcfrlem3 φ I L C
51 37 7 38 49 50 lspsnel5a φ N I L C
52 46 51 eqsstrd φ B L C
53 37 lsssssubg U LMod LSubSp U SubGrp U
54 38 53 syl φ LSubSp U SubGrp U
55 10 eldifad φ X V
56 11 eldifad φ Y V
57 prssi X V Y V X Y V
58 55 56 57 syl2anc φ X Y V
59 1 3 4 37 2 dochlss K HL W H X Y V ˙ X Y LSubSp U
60 9 58 59 syl2anc φ ˙ X Y LSubSp U
61 54 60 sseldd φ ˙ X Y SubGrp U
62 54 40 sseldd φ B SubGrp U
63 54 49 sseldd φ L C SubGrp U
64 26 lsmlub ˙ X Y SubGrp U B SubGrp U L C SubGrp U ˙ X Y L C B L C ˙ X Y LSSum U B L C
65 61 62 63 64 syl3anc φ ˙ X Y L C B L C ˙ X Y LSSum U B L C
66 44 52 65 mpbi2and φ ˙ X Y LSSum U B L C
67 27 66 eqsstrrd φ ˙ X + ˙ Y L C
68 eqid LSHyp U = LSHyp U
69 1 2 3 4 5 6 7 8 9 10 11 12 lcfrlem17 φ X + ˙ Y V 0 ˙
70 1 2 3 4 6 68 9 69 dochsnshp φ ˙ X + ˙ Y LSHyp U
71 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 lcfrlem34 φ C 0 D
72 68 30 20 21 33 32 47 lduallkr3 φ L C LSHyp U C 0 D
73 71 72 mpbird φ L C LSHyp U
74 68 32 70 73 lshpcmp φ ˙ X + ˙ Y L C ˙ X + ˙ Y = L C
75 67 74 mpbid φ ˙ X + ˙ Y = L C