Metamath Proof Explorer


Theorem lcfrlem35

Description: Lemma for lcfr . (Contributed by NM, 2-Mar-2015)

Ref Expression
Hypotheses lcfrlem17.h H=LHypK
lcfrlem17.o ˙=ocHKW
lcfrlem17.u U=DVecHKW
lcfrlem17.v V=BaseU
lcfrlem17.p +˙=+U
lcfrlem17.z 0˙=0U
lcfrlem17.n N=LSpanU
lcfrlem17.a A=LSAtomsU
lcfrlem17.k φKHLWH
lcfrlem17.x φXV0˙
lcfrlem17.y φYV0˙
lcfrlem17.ne φNXNY
lcfrlem22.b B=NXY˙X+˙Y
lcfrlem24.t ·˙=U
lcfrlem24.s S=ScalarU
lcfrlem24.q Q=0S
lcfrlem24.r R=BaseS
lcfrlem24.j J=xV0˙vVιkR|w˙xv=w+˙k·˙x
lcfrlem24.ib φIB
lcfrlem24.l L=LKerU
lcfrlem25.d D=LDualU
lcfrlem28.jn φJYIQ
lcfrlem29.i F=invrS
lcfrlem30.m -˙=-D
lcfrlem30.c C=JX-˙FJYISJXIDJY
Assertion lcfrlem35 φ˙X+˙Y=LC

Proof

Step Hyp Ref Expression
1 lcfrlem17.h H=LHypK
2 lcfrlem17.o ˙=ocHKW
3 lcfrlem17.u U=DVecHKW
4 lcfrlem17.v V=BaseU
5 lcfrlem17.p +˙=+U
6 lcfrlem17.z 0˙=0U
7 lcfrlem17.n N=LSpanU
8 lcfrlem17.a A=LSAtomsU
9 lcfrlem17.k φKHLWH
10 lcfrlem17.x φXV0˙
11 lcfrlem17.y φYV0˙
12 lcfrlem17.ne φNXNY
13 lcfrlem22.b B=NXY˙X+˙Y
14 lcfrlem24.t ·˙=U
15 lcfrlem24.s S=ScalarU
16 lcfrlem24.q Q=0S
17 lcfrlem24.r R=BaseS
18 lcfrlem24.j J=xV0˙vVιkR|w˙xv=w+˙k·˙x
19 lcfrlem24.ib φIB
20 lcfrlem24.l L=LKerU
21 lcfrlem25.d D=LDualU
22 lcfrlem28.jn φJYIQ
23 lcfrlem29.i F=invrS
24 lcfrlem30.m -˙=-D
25 lcfrlem30.c C=JX-˙FJYISJXIDJY
26 eqid LSSumU=LSSumU
27 1 2 3 4 5 6 7 8 9 10 11 12 13 26 lcfrlem23 φ˙XYLSSumUB=˙X+˙Y
28 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 lcfrlem24 φ˙XY=LJXLJY
29 eqid S=S
30 eqid LFnlU=LFnlU
31 eqid D=D
32 1 3 9 dvhlvec φULVec
33 eqid 0D=0D
34 eqid fLFnlU|˙˙Lf=Lf=fLFnlU|˙˙Lf=Lf
35 1 2 3 4 5 14 15 17 6 30 20 21 33 34 18 9 10 lcfrlem10 φJXLFnlU
36 1 2 3 4 5 14 15 17 6 30 20 21 33 34 18 9 11 lcfrlem10 φJYLFnlU
37 eqid LSubSpU=LSubSpU
38 1 3 9 dvhlmod φULMod
39 1 2 3 4 5 6 7 8 9 10 11 12 13 lcfrlem22 φBA
40 37 8 38 39 lsatlssel φBLSubSpU
41 4 37 lssel BLSubSpUIBIV
42 40 19 41 syl2anc φIV
43 4 15 29 16 23 30 21 31 24 32 35 36 42 22 25 20 lcfrlem2 φLJXLJYLC
44 28 43 eqsstrd φ˙XYLC
45 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 lcfrlem28 φI0˙
46 6 7 8 32 39 19 45 lsatel φB=NI
47 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 lcfrlem30 φCLFnlU
48 30 20 37 lkrlss ULModCLFnlULCLSubSpU
49 38 47 48 syl2anc φLCLSubSpU
50 4 15 29 16 23 30 21 31 24 32 35 36 42 22 25 20 lcfrlem3 φILC
51 37 7 38 49 50 lspsnel5a φNILC
52 46 51 eqsstrd φBLC
53 37 lsssssubg ULModLSubSpUSubGrpU
54 38 53 syl φLSubSpUSubGrpU
55 10 eldifad φXV
56 11 eldifad φYV
57 prssi XVYVXYV
58 55 56 57 syl2anc φXYV
59 1 3 4 37 2 dochlss KHLWHXYV˙XYLSubSpU
60 9 58 59 syl2anc φ˙XYLSubSpU
61 54 60 sseldd φ˙XYSubGrpU
62 54 40 sseldd φBSubGrpU
63 54 49 sseldd φLCSubGrpU
64 26 lsmlub ˙XYSubGrpUBSubGrpULCSubGrpU˙XYLCBLC˙XYLSSumUBLC
65 61 62 63 64 syl3anc φ˙XYLCBLC˙XYLSSumUBLC
66 44 52 65 mpbi2and φ˙XYLSSumUBLC
67 27 66 eqsstrrd φ˙X+˙YLC
68 eqid LSHypU=LSHypU
69 1 2 3 4 5 6 7 8 9 10 11 12 lcfrlem17 φX+˙YV0˙
70 1 2 3 4 6 68 9 69 dochsnshp φ˙X+˙YLSHypU
71 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 lcfrlem34 φC0D
72 68 30 20 21 33 32 47 lduallkr3 φLCLSHypUC0D
73 71 72 mpbird φLCLSHypU
74 68 32 70 73 lshpcmp φ˙X+˙YLC˙X+˙Y=LC
75 67 74 mpbid φ˙X+˙Y=LC