Step |
Hyp |
Ref |
Expression |
1 |
|
lcfrlem17.h |
|- H = ( LHyp ` K ) |
2 |
|
lcfrlem17.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
3 |
|
lcfrlem17.u |
|- U = ( ( DVecH ` K ) ` W ) |
4 |
|
lcfrlem17.v |
|- V = ( Base ` U ) |
5 |
|
lcfrlem17.p |
|- .+ = ( +g ` U ) |
6 |
|
lcfrlem17.z |
|- .0. = ( 0g ` U ) |
7 |
|
lcfrlem17.n |
|- N = ( LSpan ` U ) |
8 |
|
lcfrlem17.a |
|- A = ( LSAtoms ` U ) |
9 |
|
lcfrlem17.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
10 |
|
lcfrlem17.x |
|- ( ph -> X e. ( V \ { .0. } ) ) |
11 |
|
lcfrlem17.y |
|- ( ph -> Y e. ( V \ { .0. } ) ) |
12 |
|
lcfrlem17.ne |
|- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) |
13 |
|
lcfrlem22.b |
|- B = ( ( N ` { X , Y } ) i^i ( ._|_ ` { ( X .+ Y ) } ) ) |
14 |
|
lcfrlem24.t |
|- .x. = ( .s ` U ) |
15 |
|
lcfrlem24.s |
|- S = ( Scalar ` U ) |
16 |
|
lcfrlem24.q |
|- Q = ( 0g ` S ) |
17 |
|
lcfrlem24.r |
|- R = ( Base ` S ) |
18 |
|
lcfrlem24.j |
|- J = ( x e. ( V \ { .0. } ) |-> ( v e. V |-> ( iota_ k e. R E. w e. ( ._|_ ` { x } ) v = ( w .+ ( k .x. x ) ) ) ) ) |
19 |
|
lcfrlem24.ib |
|- ( ph -> I e. B ) |
20 |
|
lcfrlem24.l |
|- L = ( LKer ` U ) |
21 |
|
lcfrlem25.d |
|- D = ( LDual ` U ) |
22 |
|
lcfrlem28.jn |
|- ( ph -> ( ( J ` Y ) ` I ) =/= Q ) |
23 |
|
lcfrlem29.i |
|- F = ( invr ` S ) |
24 |
|
lcfrlem30.m |
|- .- = ( -g ` D ) |
25 |
|
lcfrlem30.c |
|- C = ( ( J ` X ) .- ( ( ( F ` ( ( J ` Y ) ` I ) ) ( .r ` S ) ( ( J ` X ) ` I ) ) ( .s ` D ) ( J ` Y ) ) ) |
26 |
|
eqid |
|- ( LSSum ` U ) = ( LSSum ` U ) |
27 |
1 2 3 4 5 6 7 8 9 10 11 12 13 26
|
lcfrlem23 |
|- ( ph -> ( ( ._|_ ` { X , Y } ) ( LSSum ` U ) B ) = ( ._|_ ` { ( X .+ Y ) } ) ) |
28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
|
lcfrlem24 |
|- ( ph -> ( ._|_ ` { X , Y } ) = ( ( L ` ( J ` X ) ) i^i ( L ` ( J ` Y ) ) ) ) |
29 |
|
eqid |
|- ( .r ` S ) = ( .r ` S ) |
30 |
|
eqid |
|- ( LFnl ` U ) = ( LFnl ` U ) |
31 |
|
eqid |
|- ( .s ` D ) = ( .s ` D ) |
32 |
1 3 9
|
dvhlvec |
|- ( ph -> U e. LVec ) |
33 |
|
eqid |
|- ( 0g ` D ) = ( 0g ` D ) |
34 |
|
eqid |
|- { f e. ( LFnl ` U ) | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } = { f e. ( LFnl ` U ) | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } |
35 |
1 2 3 4 5 14 15 17 6 30 20 21 33 34 18 9 10
|
lcfrlem10 |
|- ( ph -> ( J ` X ) e. ( LFnl ` U ) ) |
36 |
1 2 3 4 5 14 15 17 6 30 20 21 33 34 18 9 11
|
lcfrlem10 |
|- ( ph -> ( J ` Y ) e. ( LFnl ` U ) ) |
37 |
|
eqid |
|- ( LSubSp ` U ) = ( LSubSp ` U ) |
38 |
1 3 9
|
dvhlmod |
|- ( ph -> U e. LMod ) |
39 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
lcfrlem22 |
|- ( ph -> B e. A ) |
40 |
37 8 38 39
|
lsatlssel |
|- ( ph -> B e. ( LSubSp ` U ) ) |
41 |
4 37
|
lssel |
|- ( ( B e. ( LSubSp ` U ) /\ I e. B ) -> I e. V ) |
42 |
40 19 41
|
syl2anc |
|- ( ph -> I e. V ) |
43 |
4 15 29 16 23 30 21 31 24 32 35 36 42 22 25 20
|
lcfrlem2 |
|- ( ph -> ( ( L ` ( J ` X ) ) i^i ( L ` ( J ` Y ) ) ) C_ ( L ` C ) ) |
44 |
28 43
|
eqsstrd |
|- ( ph -> ( ._|_ ` { X , Y } ) C_ ( L ` C ) ) |
45 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
|
lcfrlem28 |
|- ( ph -> I =/= .0. ) |
46 |
6 7 8 32 39 19 45
|
lsatel |
|- ( ph -> B = ( N ` { I } ) ) |
47 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
|
lcfrlem30 |
|- ( ph -> C e. ( LFnl ` U ) ) |
48 |
30 20 37
|
lkrlss |
|- ( ( U e. LMod /\ C e. ( LFnl ` U ) ) -> ( L ` C ) e. ( LSubSp ` U ) ) |
49 |
38 47 48
|
syl2anc |
|- ( ph -> ( L ` C ) e. ( LSubSp ` U ) ) |
50 |
4 15 29 16 23 30 21 31 24 32 35 36 42 22 25 20
|
lcfrlem3 |
|- ( ph -> I e. ( L ` C ) ) |
51 |
37 7 38 49 50
|
lspsnel5a |
|- ( ph -> ( N ` { I } ) C_ ( L ` C ) ) |
52 |
46 51
|
eqsstrd |
|- ( ph -> B C_ ( L ` C ) ) |
53 |
37
|
lsssssubg |
|- ( U e. LMod -> ( LSubSp ` U ) C_ ( SubGrp ` U ) ) |
54 |
38 53
|
syl |
|- ( ph -> ( LSubSp ` U ) C_ ( SubGrp ` U ) ) |
55 |
10
|
eldifad |
|- ( ph -> X e. V ) |
56 |
11
|
eldifad |
|- ( ph -> Y e. V ) |
57 |
|
prssi |
|- ( ( X e. V /\ Y e. V ) -> { X , Y } C_ V ) |
58 |
55 56 57
|
syl2anc |
|- ( ph -> { X , Y } C_ V ) |
59 |
1 3 4 37 2
|
dochlss |
|- ( ( ( K e. HL /\ W e. H ) /\ { X , Y } C_ V ) -> ( ._|_ ` { X , Y } ) e. ( LSubSp ` U ) ) |
60 |
9 58 59
|
syl2anc |
|- ( ph -> ( ._|_ ` { X , Y } ) e. ( LSubSp ` U ) ) |
61 |
54 60
|
sseldd |
|- ( ph -> ( ._|_ ` { X , Y } ) e. ( SubGrp ` U ) ) |
62 |
54 40
|
sseldd |
|- ( ph -> B e. ( SubGrp ` U ) ) |
63 |
54 49
|
sseldd |
|- ( ph -> ( L ` C ) e. ( SubGrp ` U ) ) |
64 |
26
|
lsmlub |
|- ( ( ( ._|_ ` { X , Y } ) e. ( SubGrp ` U ) /\ B e. ( SubGrp ` U ) /\ ( L ` C ) e. ( SubGrp ` U ) ) -> ( ( ( ._|_ ` { X , Y } ) C_ ( L ` C ) /\ B C_ ( L ` C ) ) <-> ( ( ._|_ ` { X , Y } ) ( LSSum ` U ) B ) C_ ( L ` C ) ) ) |
65 |
61 62 63 64
|
syl3anc |
|- ( ph -> ( ( ( ._|_ ` { X , Y } ) C_ ( L ` C ) /\ B C_ ( L ` C ) ) <-> ( ( ._|_ ` { X , Y } ) ( LSSum ` U ) B ) C_ ( L ` C ) ) ) |
66 |
44 52 65
|
mpbi2and |
|- ( ph -> ( ( ._|_ ` { X , Y } ) ( LSSum ` U ) B ) C_ ( L ` C ) ) |
67 |
27 66
|
eqsstrrd |
|- ( ph -> ( ._|_ ` { ( X .+ Y ) } ) C_ ( L ` C ) ) |
68 |
|
eqid |
|- ( LSHyp ` U ) = ( LSHyp ` U ) |
69 |
1 2 3 4 5 6 7 8 9 10 11 12
|
lcfrlem17 |
|- ( ph -> ( X .+ Y ) e. ( V \ { .0. } ) ) |
70 |
1 2 3 4 6 68 9 69
|
dochsnshp |
|- ( ph -> ( ._|_ ` { ( X .+ Y ) } ) e. ( LSHyp ` U ) ) |
71 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
|
lcfrlem34 |
|- ( ph -> C =/= ( 0g ` D ) ) |
72 |
68 30 20 21 33 32 47
|
lduallkr3 |
|- ( ph -> ( ( L ` C ) e. ( LSHyp ` U ) <-> C =/= ( 0g ` D ) ) ) |
73 |
71 72
|
mpbird |
|- ( ph -> ( L ` C ) e. ( LSHyp ` U ) ) |
74 |
68 32 70 73
|
lshpcmp |
|- ( ph -> ( ( ._|_ ` { ( X .+ Y ) } ) C_ ( L ` C ) <-> ( ._|_ ` { ( X .+ Y ) } ) = ( L ` C ) ) ) |
75 |
67 74
|
mpbid |
|- ( ph -> ( ._|_ ` { ( X .+ Y ) } ) = ( L ` C ) ) |