Metamath Proof Explorer


Theorem lcfrlem28

Description: Lemma for lcfr . TODO: This can be a hypothesis since the zero version of ( JY )I needs it. (Contributed by NM, 9-Mar-2015)

Ref Expression
Hypotheses lcfrlem17.h
|- H = ( LHyp ` K )
lcfrlem17.o
|- ._|_ = ( ( ocH ` K ) ` W )
lcfrlem17.u
|- U = ( ( DVecH ` K ) ` W )
lcfrlem17.v
|- V = ( Base ` U )
lcfrlem17.p
|- .+ = ( +g ` U )
lcfrlem17.z
|- .0. = ( 0g ` U )
lcfrlem17.n
|- N = ( LSpan ` U )
lcfrlem17.a
|- A = ( LSAtoms ` U )
lcfrlem17.k
|- ( ph -> ( K e. HL /\ W e. H ) )
lcfrlem17.x
|- ( ph -> X e. ( V \ { .0. } ) )
lcfrlem17.y
|- ( ph -> Y e. ( V \ { .0. } ) )
lcfrlem17.ne
|- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) )
lcfrlem22.b
|- B = ( ( N ` { X , Y } ) i^i ( ._|_ ` { ( X .+ Y ) } ) )
lcfrlem24.t
|- .x. = ( .s ` U )
lcfrlem24.s
|- S = ( Scalar ` U )
lcfrlem24.q
|- Q = ( 0g ` S )
lcfrlem24.r
|- R = ( Base ` S )
lcfrlem24.j
|- J = ( x e. ( V \ { .0. } ) |-> ( v e. V |-> ( iota_ k e. R E. w e. ( ._|_ ` { x } ) v = ( w .+ ( k .x. x ) ) ) ) )
lcfrlem24.ib
|- ( ph -> I e. B )
lcfrlem24.l
|- L = ( LKer ` U )
lcfrlem25.d
|- D = ( LDual ` U )
lcfrlem28.jn
|- ( ph -> ( ( J ` Y ) ` I ) =/= Q )
Assertion lcfrlem28
|- ( ph -> I =/= .0. )

Proof

Step Hyp Ref Expression
1 lcfrlem17.h
 |-  H = ( LHyp ` K )
2 lcfrlem17.o
 |-  ._|_ = ( ( ocH ` K ) ` W )
3 lcfrlem17.u
 |-  U = ( ( DVecH ` K ) ` W )
4 lcfrlem17.v
 |-  V = ( Base ` U )
5 lcfrlem17.p
 |-  .+ = ( +g ` U )
6 lcfrlem17.z
 |-  .0. = ( 0g ` U )
7 lcfrlem17.n
 |-  N = ( LSpan ` U )
8 lcfrlem17.a
 |-  A = ( LSAtoms ` U )
9 lcfrlem17.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
10 lcfrlem17.x
 |-  ( ph -> X e. ( V \ { .0. } ) )
11 lcfrlem17.y
 |-  ( ph -> Y e. ( V \ { .0. } ) )
12 lcfrlem17.ne
 |-  ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) )
13 lcfrlem22.b
 |-  B = ( ( N ` { X , Y } ) i^i ( ._|_ ` { ( X .+ Y ) } ) )
14 lcfrlem24.t
 |-  .x. = ( .s ` U )
15 lcfrlem24.s
 |-  S = ( Scalar ` U )
16 lcfrlem24.q
 |-  Q = ( 0g ` S )
17 lcfrlem24.r
 |-  R = ( Base ` S )
18 lcfrlem24.j
 |-  J = ( x e. ( V \ { .0. } ) |-> ( v e. V |-> ( iota_ k e. R E. w e. ( ._|_ ` { x } ) v = ( w .+ ( k .x. x ) ) ) ) )
19 lcfrlem24.ib
 |-  ( ph -> I e. B )
20 lcfrlem24.l
 |-  L = ( LKer ` U )
21 lcfrlem25.d
 |-  D = ( LDual ` U )
22 lcfrlem28.jn
 |-  ( ph -> ( ( J ` Y ) ` I ) =/= Q )
23 1 3 9 dvhlmod
 |-  ( ph -> U e. LMod )
24 eqid
 |-  ( LFnl ` U ) = ( LFnl ` U )
25 eqid
 |-  ( 0g ` D ) = ( 0g ` D )
26 eqid
 |-  { f e. ( LFnl ` U ) | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } = { f e. ( LFnl ` U ) | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) }
27 1 2 3 4 5 14 15 17 6 24 20 21 25 26 18 9 11 lcfrlem10
 |-  ( ph -> ( J ` Y ) e. ( LFnl ` U ) )
28 15 16 6 24 lfl0
 |-  ( ( U e. LMod /\ ( J ` Y ) e. ( LFnl ` U ) ) -> ( ( J ` Y ) ` .0. ) = Q )
29 23 27 28 syl2anc
 |-  ( ph -> ( ( J ` Y ) ` .0. ) = Q )
30 fveqeq2
 |-  ( I = .0. -> ( ( ( J ` Y ) ` I ) = Q <-> ( ( J ` Y ) ` .0. ) = Q ) )
31 29 30 syl5ibrcom
 |-  ( ph -> ( I = .0. -> ( ( J ` Y ) ` I ) = Q ) )
32 31 necon3d
 |-  ( ph -> ( ( ( J ` Y ) ` I ) =/= Q -> I =/= .0. ) )
33 22 32 mpd
 |-  ( ph -> I =/= .0. )