Metamath Proof Explorer


Theorem lcfrlem28

Description: Lemma for lcfr . TODO: This can be a hypothesis since the zero version of ( JY )I needs it. (Contributed by NM, 9-Mar-2015)

Ref Expression
Hypotheses lcfrlem17.h 𝐻 = ( LHyp ‘ 𝐾 )
lcfrlem17.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
lcfrlem17.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
lcfrlem17.v 𝑉 = ( Base ‘ 𝑈 )
lcfrlem17.p + = ( +g𝑈 )
lcfrlem17.z 0 = ( 0g𝑈 )
lcfrlem17.n 𝑁 = ( LSpan ‘ 𝑈 )
lcfrlem17.a 𝐴 = ( LSAtoms ‘ 𝑈 )
lcfrlem17.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
lcfrlem17.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
lcfrlem17.y ( 𝜑𝑌 ∈ ( 𝑉 ∖ { 0 } ) )
lcfrlem17.ne ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) )
lcfrlem22.b 𝐵 = ( ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∩ ( ‘ { ( 𝑋 + 𝑌 ) } ) )
lcfrlem24.t · = ( ·𝑠𝑈 )
lcfrlem24.s 𝑆 = ( Scalar ‘ 𝑈 )
lcfrlem24.q 𝑄 = ( 0g𝑆 )
lcfrlem24.r 𝑅 = ( Base ‘ 𝑆 )
lcfrlem24.j 𝐽 = ( 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ↦ ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑥 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑥 ) ) ) ) )
lcfrlem24.ib ( 𝜑𝐼𝐵 )
lcfrlem24.l 𝐿 = ( LKer ‘ 𝑈 )
lcfrlem25.d 𝐷 = ( LDual ‘ 𝑈 )
lcfrlem28.jn ( 𝜑 → ( ( 𝐽𝑌 ) ‘ 𝐼 ) ≠ 𝑄 )
Assertion lcfrlem28 ( 𝜑𝐼0 )

Proof

Step Hyp Ref Expression
1 lcfrlem17.h 𝐻 = ( LHyp ‘ 𝐾 )
2 lcfrlem17.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
3 lcfrlem17.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
4 lcfrlem17.v 𝑉 = ( Base ‘ 𝑈 )
5 lcfrlem17.p + = ( +g𝑈 )
6 lcfrlem17.z 0 = ( 0g𝑈 )
7 lcfrlem17.n 𝑁 = ( LSpan ‘ 𝑈 )
8 lcfrlem17.a 𝐴 = ( LSAtoms ‘ 𝑈 )
9 lcfrlem17.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
10 lcfrlem17.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
11 lcfrlem17.y ( 𝜑𝑌 ∈ ( 𝑉 ∖ { 0 } ) )
12 lcfrlem17.ne ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) )
13 lcfrlem22.b 𝐵 = ( ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∩ ( ‘ { ( 𝑋 + 𝑌 ) } ) )
14 lcfrlem24.t · = ( ·𝑠𝑈 )
15 lcfrlem24.s 𝑆 = ( Scalar ‘ 𝑈 )
16 lcfrlem24.q 𝑄 = ( 0g𝑆 )
17 lcfrlem24.r 𝑅 = ( Base ‘ 𝑆 )
18 lcfrlem24.j 𝐽 = ( 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ↦ ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑥 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑥 ) ) ) ) )
19 lcfrlem24.ib ( 𝜑𝐼𝐵 )
20 lcfrlem24.l 𝐿 = ( LKer ‘ 𝑈 )
21 lcfrlem25.d 𝐷 = ( LDual ‘ 𝑈 )
22 lcfrlem28.jn ( 𝜑 → ( ( 𝐽𝑌 ) ‘ 𝐼 ) ≠ 𝑄 )
23 1 3 9 dvhlmod ( 𝜑𝑈 ∈ LMod )
24 eqid ( LFnl ‘ 𝑈 ) = ( LFnl ‘ 𝑈 )
25 eqid ( 0g𝐷 ) = ( 0g𝐷 )
26 eqid { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ‘ ( ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) } = { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ‘ ( ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) }
27 1 2 3 4 5 14 15 17 6 24 20 21 25 26 18 9 11 lcfrlem10 ( 𝜑 → ( 𝐽𝑌 ) ∈ ( LFnl ‘ 𝑈 ) )
28 15 16 6 24 lfl0 ( ( 𝑈 ∈ LMod ∧ ( 𝐽𝑌 ) ∈ ( LFnl ‘ 𝑈 ) ) → ( ( 𝐽𝑌 ) ‘ 0 ) = 𝑄 )
29 23 27 28 syl2anc ( 𝜑 → ( ( 𝐽𝑌 ) ‘ 0 ) = 𝑄 )
30 fveqeq2 ( 𝐼 = 0 → ( ( ( 𝐽𝑌 ) ‘ 𝐼 ) = 𝑄 ↔ ( ( 𝐽𝑌 ) ‘ 0 ) = 𝑄 ) )
31 29 30 syl5ibrcom ( 𝜑 → ( 𝐼 = 0 → ( ( 𝐽𝑌 ) ‘ 𝐼 ) = 𝑄 ) )
32 31 necon3d ( 𝜑 → ( ( ( 𝐽𝑌 ) ‘ 𝐼 ) ≠ 𝑄𝐼0 ) )
33 22 32 mpd ( 𝜑𝐼0 )