Step |
Hyp |
Ref |
Expression |
1 |
|
lcfrlem17.h |
|- H = ( LHyp ` K ) |
2 |
|
lcfrlem17.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
3 |
|
lcfrlem17.u |
|- U = ( ( DVecH ` K ) ` W ) |
4 |
|
lcfrlem17.v |
|- V = ( Base ` U ) |
5 |
|
lcfrlem17.p |
|- .+ = ( +g ` U ) |
6 |
|
lcfrlem17.z |
|- .0. = ( 0g ` U ) |
7 |
|
lcfrlem17.n |
|- N = ( LSpan ` U ) |
8 |
|
lcfrlem17.a |
|- A = ( LSAtoms ` U ) |
9 |
|
lcfrlem17.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
10 |
|
lcfrlem17.x |
|- ( ph -> X e. ( V \ { .0. } ) ) |
11 |
|
lcfrlem17.y |
|- ( ph -> Y e. ( V \ { .0. } ) ) |
12 |
|
lcfrlem17.ne |
|- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) |
13 |
|
lcfrlem22.b |
|- B = ( ( N ` { X , Y } ) i^i ( ._|_ ` { ( X .+ Y ) } ) ) |
14 |
|
lcfrlem24.t |
|- .x. = ( .s ` U ) |
15 |
|
lcfrlem24.s |
|- S = ( Scalar ` U ) |
16 |
|
lcfrlem24.q |
|- Q = ( 0g ` S ) |
17 |
|
lcfrlem24.r |
|- R = ( Base ` S ) |
18 |
|
lcfrlem24.j |
|- J = ( x e. ( V \ { .0. } ) |-> ( v e. V |-> ( iota_ k e. R E. w e. ( ._|_ ` { x } ) v = ( w .+ ( k .x. x ) ) ) ) ) |
19 |
|
lcfrlem24.ib |
|- ( ph -> I e. B ) |
20 |
|
lcfrlem24.l |
|- L = ( LKer ` U ) |
21 |
1 2 3 4 5 6 7 8 9 10 11 12
|
lcfrlem18 |
|- ( ph -> ( ._|_ ` { X , Y } ) = ( ( ._|_ ` { X } ) i^i ( ._|_ ` { Y } ) ) ) |
22 |
|
eqid |
|- ( LFnl ` U ) = ( LFnl ` U ) |
23 |
|
eqid |
|- ( LDual ` U ) = ( LDual ` U ) |
24 |
|
eqid |
|- ( 0g ` ( LDual ` U ) ) = ( 0g ` ( LDual ` U ) ) |
25 |
|
eqid |
|- { f e. ( LFnl ` U ) | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } = { f e. ( LFnl ` U ) | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } |
26 |
1 2 3 4 5 14 15 17 6 22 20 23 24 25 18 9 10
|
lcfrlem11 |
|- ( ph -> ( L ` ( J ` X ) ) = ( ._|_ ` { X } ) ) |
27 |
1 2 3 4 5 14 15 17 6 22 20 23 24 25 18 9 11
|
lcfrlem11 |
|- ( ph -> ( L ` ( J ` Y ) ) = ( ._|_ ` { Y } ) ) |
28 |
26 27
|
ineq12d |
|- ( ph -> ( ( L ` ( J ` X ) ) i^i ( L ` ( J ` Y ) ) ) = ( ( ._|_ ` { X } ) i^i ( ._|_ ` { Y } ) ) ) |
29 |
21 28
|
eqtr4d |
|- ( ph -> ( ._|_ ` { X , Y } ) = ( ( L ` ( J ` X ) ) i^i ( L ` ( J ` Y ) ) ) ) |