Metamath Proof Explorer


Theorem lcfrlem25

Description: Lemma for lcfr . Special case of lcfrlem35 when ( ( JY )I ) is zero. (Contributed by NM, 11-Mar-2015)

Ref Expression
Hypotheses lcfrlem17.h
|- H = ( LHyp ` K )
lcfrlem17.o
|- ._|_ = ( ( ocH ` K ) ` W )
lcfrlem17.u
|- U = ( ( DVecH ` K ) ` W )
lcfrlem17.v
|- V = ( Base ` U )
lcfrlem17.p
|- .+ = ( +g ` U )
lcfrlem17.z
|- .0. = ( 0g ` U )
lcfrlem17.n
|- N = ( LSpan ` U )
lcfrlem17.a
|- A = ( LSAtoms ` U )
lcfrlem17.k
|- ( ph -> ( K e. HL /\ W e. H ) )
lcfrlem17.x
|- ( ph -> X e. ( V \ { .0. } ) )
lcfrlem17.y
|- ( ph -> Y e. ( V \ { .0. } ) )
lcfrlem17.ne
|- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) )
lcfrlem22.b
|- B = ( ( N ` { X , Y } ) i^i ( ._|_ ` { ( X .+ Y ) } ) )
lcfrlem24.t
|- .x. = ( .s ` U )
lcfrlem24.s
|- S = ( Scalar ` U )
lcfrlem24.q
|- Q = ( 0g ` S )
lcfrlem24.r
|- R = ( Base ` S )
lcfrlem24.j
|- J = ( x e. ( V \ { .0. } ) |-> ( v e. V |-> ( iota_ k e. R E. w e. ( ._|_ ` { x } ) v = ( w .+ ( k .x. x ) ) ) ) )
lcfrlem24.ib
|- ( ph -> I e. B )
lcfrlem24.l
|- L = ( LKer ` U )
lcfrlem25.d
|- D = ( LDual ` U )
lcfrlem25.jz
|- ( ph -> ( ( J ` Y ) ` I ) = Q )
lcfrlem25.in
|- ( ph -> I =/= .0. )
Assertion lcfrlem25
|- ( ph -> ( ._|_ ` { ( X .+ Y ) } ) = ( L ` ( J ` Y ) ) )

Proof

Step Hyp Ref Expression
1 lcfrlem17.h
 |-  H = ( LHyp ` K )
2 lcfrlem17.o
 |-  ._|_ = ( ( ocH ` K ) ` W )
3 lcfrlem17.u
 |-  U = ( ( DVecH ` K ) ` W )
4 lcfrlem17.v
 |-  V = ( Base ` U )
5 lcfrlem17.p
 |-  .+ = ( +g ` U )
6 lcfrlem17.z
 |-  .0. = ( 0g ` U )
7 lcfrlem17.n
 |-  N = ( LSpan ` U )
8 lcfrlem17.a
 |-  A = ( LSAtoms ` U )
9 lcfrlem17.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
10 lcfrlem17.x
 |-  ( ph -> X e. ( V \ { .0. } ) )
11 lcfrlem17.y
 |-  ( ph -> Y e. ( V \ { .0. } ) )
12 lcfrlem17.ne
 |-  ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) )
13 lcfrlem22.b
 |-  B = ( ( N ` { X , Y } ) i^i ( ._|_ ` { ( X .+ Y ) } ) )
14 lcfrlem24.t
 |-  .x. = ( .s ` U )
15 lcfrlem24.s
 |-  S = ( Scalar ` U )
16 lcfrlem24.q
 |-  Q = ( 0g ` S )
17 lcfrlem24.r
 |-  R = ( Base ` S )
18 lcfrlem24.j
 |-  J = ( x e. ( V \ { .0. } ) |-> ( v e. V |-> ( iota_ k e. R E. w e. ( ._|_ ` { x } ) v = ( w .+ ( k .x. x ) ) ) ) )
19 lcfrlem24.ib
 |-  ( ph -> I e. B )
20 lcfrlem24.l
 |-  L = ( LKer ` U )
21 lcfrlem25.d
 |-  D = ( LDual ` U )
22 lcfrlem25.jz
 |-  ( ph -> ( ( J ` Y ) ` I ) = Q )
23 lcfrlem25.in
 |-  ( ph -> I =/= .0. )
24 eqid
 |-  ( LSSum ` U ) = ( LSSum ` U )
25 1 2 3 4 5 6 7 8 9 10 11 12 13 24 lcfrlem23
 |-  ( ph -> ( ( ._|_ ` { X , Y } ) ( LSSum ` U ) B ) = ( ._|_ ` { ( X .+ Y ) } ) )
26 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 lcfrlem24
 |-  ( ph -> ( ._|_ ` { X , Y } ) = ( ( L ` ( J ` X ) ) i^i ( L ` ( J ` Y ) ) ) )
27 inss2
 |-  ( ( L ` ( J ` X ) ) i^i ( L ` ( J ` Y ) ) ) C_ ( L ` ( J ` Y ) )
28 26 27 eqsstrdi
 |-  ( ph -> ( ._|_ ` { X , Y } ) C_ ( L ` ( J ` Y ) ) )
29 1 3 9 dvhlvec
 |-  ( ph -> U e. LVec )
30 1 2 3 4 5 6 7 8 9 10 11 12 13 lcfrlem22
 |-  ( ph -> B e. A )
31 6 7 8 29 30 19 23 lsatel
 |-  ( ph -> B = ( N ` { I } ) )
32 eqid
 |-  ( LSubSp ` U ) = ( LSubSp ` U )
33 1 3 9 dvhlmod
 |-  ( ph -> U e. LMod )
34 eqid
 |-  ( LFnl ` U ) = ( LFnl ` U )
35 eqid
 |-  ( 0g ` D ) = ( 0g ` D )
36 eqid
 |-  { f e. ( LFnl ` U ) | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } = { f e. ( LFnl ` U ) | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) }
37 1 2 3 4 5 14 15 17 6 34 20 21 35 36 18 9 11 lcfrlem10
 |-  ( ph -> ( J ` Y ) e. ( LFnl ` U ) )
38 34 20 32 lkrlss
 |-  ( ( U e. LMod /\ ( J ` Y ) e. ( LFnl ` U ) ) -> ( L ` ( J ` Y ) ) e. ( LSubSp ` U ) )
39 33 37 38 syl2anc
 |-  ( ph -> ( L ` ( J ` Y ) ) e. ( LSubSp ` U ) )
40 4 8 33 30 lsatssv
 |-  ( ph -> B C_ V )
41 40 19 sseldd
 |-  ( ph -> I e. V )
42 4 15 16 34 20 33 37 41 ellkr2
 |-  ( ph -> ( I e. ( L ` ( J ` Y ) ) <-> ( ( J ` Y ) ` I ) = Q ) )
43 22 42 mpbird
 |-  ( ph -> I e. ( L ` ( J ` Y ) ) )
44 32 7 33 39 43 lspsnel5a
 |-  ( ph -> ( N ` { I } ) C_ ( L ` ( J ` Y ) ) )
45 31 44 eqsstrd
 |-  ( ph -> B C_ ( L ` ( J ` Y ) ) )
46 32 lsssssubg
 |-  ( U e. LMod -> ( LSubSp ` U ) C_ ( SubGrp ` U ) )
47 33 46 syl
 |-  ( ph -> ( LSubSp ` U ) C_ ( SubGrp ` U ) )
48 10 eldifad
 |-  ( ph -> X e. V )
49 11 eldifad
 |-  ( ph -> Y e. V )
50 prssi
 |-  ( ( X e. V /\ Y e. V ) -> { X , Y } C_ V )
51 48 49 50 syl2anc
 |-  ( ph -> { X , Y } C_ V )
52 1 3 4 32 2 dochlss
 |-  ( ( ( K e. HL /\ W e. H ) /\ { X , Y } C_ V ) -> ( ._|_ ` { X , Y } ) e. ( LSubSp ` U ) )
53 9 51 52 syl2anc
 |-  ( ph -> ( ._|_ ` { X , Y } ) e. ( LSubSp ` U ) )
54 47 53 sseldd
 |-  ( ph -> ( ._|_ ` { X , Y } ) e. ( SubGrp ` U ) )
55 4 32 7 33 48 49 lspprcl
 |-  ( ph -> ( N ` { X , Y } ) e. ( LSubSp ` U ) )
56 1 2 3 4 5 6 7 8 9 10 11 12 lcfrlem17
 |-  ( ph -> ( X .+ Y ) e. ( V \ { .0. } ) )
57 56 eldifad
 |-  ( ph -> ( X .+ Y ) e. V )
58 57 snssd
 |-  ( ph -> { ( X .+ Y ) } C_ V )
59 1 3 4 32 2 dochlss
 |-  ( ( ( K e. HL /\ W e. H ) /\ { ( X .+ Y ) } C_ V ) -> ( ._|_ ` { ( X .+ Y ) } ) e. ( LSubSp ` U ) )
60 9 58 59 syl2anc
 |-  ( ph -> ( ._|_ ` { ( X .+ Y ) } ) e. ( LSubSp ` U ) )
61 32 lssincl
 |-  ( ( U e. LMod /\ ( N ` { X , Y } ) e. ( LSubSp ` U ) /\ ( ._|_ ` { ( X .+ Y ) } ) e. ( LSubSp ` U ) ) -> ( ( N ` { X , Y } ) i^i ( ._|_ ` { ( X .+ Y ) } ) ) e. ( LSubSp ` U ) )
62 33 55 60 61 syl3anc
 |-  ( ph -> ( ( N ` { X , Y } ) i^i ( ._|_ ` { ( X .+ Y ) } ) ) e. ( LSubSp ` U ) )
63 13 62 eqeltrid
 |-  ( ph -> B e. ( LSubSp ` U ) )
64 47 63 sseldd
 |-  ( ph -> B e. ( SubGrp ` U ) )
65 47 39 sseldd
 |-  ( ph -> ( L ` ( J ` Y ) ) e. ( SubGrp ` U ) )
66 24 lsmlub
 |-  ( ( ( ._|_ ` { X , Y } ) e. ( SubGrp ` U ) /\ B e. ( SubGrp ` U ) /\ ( L ` ( J ` Y ) ) e. ( SubGrp ` U ) ) -> ( ( ( ._|_ ` { X , Y } ) C_ ( L ` ( J ` Y ) ) /\ B C_ ( L ` ( J ` Y ) ) ) <-> ( ( ._|_ ` { X , Y } ) ( LSSum ` U ) B ) C_ ( L ` ( J ` Y ) ) ) )
67 54 64 65 66 syl3anc
 |-  ( ph -> ( ( ( ._|_ ` { X , Y } ) C_ ( L ` ( J ` Y ) ) /\ B C_ ( L ` ( J ` Y ) ) ) <-> ( ( ._|_ ` { X , Y } ) ( LSSum ` U ) B ) C_ ( L ` ( J ` Y ) ) ) )
68 28 45 67 mpbi2and
 |-  ( ph -> ( ( ._|_ ` { X , Y } ) ( LSSum ` U ) B ) C_ ( L ` ( J ` Y ) ) )
69 25 68 eqsstrrd
 |-  ( ph -> ( ._|_ ` { ( X .+ Y ) } ) C_ ( L ` ( J ` Y ) ) )
70 eqid
 |-  ( LSHyp ` U ) = ( LSHyp ` U )
71 1 2 3 4 6 70 9 56 dochsnshp
 |-  ( ph -> ( ._|_ ` { ( X .+ Y ) } ) e. ( LSHyp ` U ) )
72 1 2 3 4 5 14 15 17 6 34 20 21 35 36 18 9 11 lcfrlem13
 |-  ( ph -> ( J ` Y ) e. ( { f e. ( LFnl ` U ) | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } \ { ( 0g ` D ) } ) )
73 eldifsni
 |-  ( ( J ` Y ) e. ( { f e. ( LFnl ` U ) | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } \ { ( 0g ` D ) } ) -> ( J ` Y ) =/= ( 0g ` D ) )
74 72 73 syl
 |-  ( ph -> ( J ` Y ) =/= ( 0g ` D ) )
75 70 34 20 21 35 29 37 lduallkr3
 |-  ( ph -> ( ( L ` ( J ` Y ) ) e. ( LSHyp ` U ) <-> ( J ` Y ) =/= ( 0g ` D ) ) )
76 74 75 mpbird
 |-  ( ph -> ( L ` ( J ` Y ) ) e. ( LSHyp ` U ) )
77 70 29 71 76 lshpcmp
 |-  ( ph -> ( ( ._|_ ` { ( X .+ Y ) } ) C_ ( L ` ( J ` Y ) ) <-> ( ._|_ ` { ( X .+ Y ) } ) = ( L ` ( J ` Y ) ) ) )
78 69 77 mpbid
 |-  ( ph -> ( ._|_ ` { ( X .+ Y ) } ) = ( L ` ( J ` Y ) ) )