Step |
Hyp |
Ref |
Expression |
1 |
|
lcfrlem17.h |
|- H = ( LHyp ` K ) |
2 |
|
lcfrlem17.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
3 |
|
lcfrlem17.u |
|- U = ( ( DVecH ` K ) ` W ) |
4 |
|
lcfrlem17.v |
|- V = ( Base ` U ) |
5 |
|
lcfrlem17.p |
|- .+ = ( +g ` U ) |
6 |
|
lcfrlem17.z |
|- .0. = ( 0g ` U ) |
7 |
|
lcfrlem17.n |
|- N = ( LSpan ` U ) |
8 |
|
lcfrlem17.a |
|- A = ( LSAtoms ` U ) |
9 |
|
lcfrlem17.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
10 |
|
lcfrlem17.x |
|- ( ph -> X e. ( V \ { .0. } ) ) |
11 |
|
lcfrlem17.y |
|- ( ph -> Y e. ( V \ { .0. } ) ) |
12 |
|
lcfrlem17.ne |
|- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) |
13 |
|
lcfrlem22.b |
|- B = ( ( N ` { X , Y } ) i^i ( ._|_ ` { ( X .+ Y ) } ) ) |
14 |
|
lcfrlem24.t |
|- .x. = ( .s ` U ) |
15 |
|
lcfrlem24.s |
|- S = ( Scalar ` U ) |
16 |
|
lcfrlem24.q |
|- Q = ( 0g ` S ) |
17 |
|
lcfrlem24.r |
|- R = ( Base ` S ) |
18 |
|
lcfrlem24.j |
|- J = ( x e. ( V \ { .0. } ) |-> ( v e. V |-> ( iota_ k e. R E. w e. ( ._|_ ` { x } ) v = ( w .+ ( k .x. x ) ) ) ) ) |
19 |
|
lcfrlem24.ib |
|- ( ph -> I e. B ) |
20 |
|
lcfrlem24.l |
|- L = ( LKer ` U ) |
21 |
|
lcfrlem25.d |
|- D = ( LDual ` U ) |
22 |
|
lcfrlem25.jz |
|- ( ph -> ( ( J ` Y ) ` I ) = Q ) |
23 |
|
lcfrlem25.in |
|- ( ph -> I =/= .0. ) |
24 |
|
eqid |
|- ( LSSum ` U ) = ( LSSum ` U ) |
25 |
1 2 3 4 5 6 7 8 9 10 11 12 13 24
|
lcfrlem23 |
|- ( ph -> ( ( ._|_ ` { X , Y } ) ( LSSum ` U ) B ) = ( ._|_ ` { ( X .+ Y ) } ) ) |
26 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
|
lcfrlem24 |
|- ( ph -> ( ._|_ ` { X , Y } ) = ( ( L ` ( J ` X ) ) i^i ( L ` ( J ` Y ) ) ) ) |
27 |
|
inss2 |
|- ( ( L ` ( J ` X ) ) i^i ( L ` ( J ` Y ) ) ) C_ ( L ` ( J ` Y ) ) |
28 |
26 27
|
eqsstrdi |
|- ( ph -> ( ._|_ ` { X , Y } ) C_ ( L ` ( J ` Y ) ) ) |
29 |
1 3 9
|
dvhlvec |
|- ( ph -> U e. LVec ) |
30 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
lcfrlem22 |
|- ( ph -> B e. A ) |
31 |
6 7 8 29 30 19 23
|
lsatel |
|- ( ph -> B = ( N ` { I } ) ) |
32 |
|
eqid |
|- ( LSubSp ` U ) = ( LSubSp ` U ) |
33 |
1 3 9
|
dvhlmod |
|- ( ph -> U e. LMod ) |
34 |
|
eqid |
|- ( LFnl ` U ) = ( LFnl ` U ) |
35 |
|
eqid |
|- ( 0g ` D ) = ( 0g ` D ) |
36 |
|
eqid |
|- { f e. ( LFnl ` U ) | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } = { f e. ( LFnl ` U ) | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } |
37 |
1 2 3 4 5 14 15 17 6 34 20 21 35 36 18 9 11
|
lcfrlem10 |
|- ( ph -> ( J ` Y ) e. ( LFnl ` U ) ) |
38 |
34 20 32
|
lkrlss |
|- ( ( U e. LMod /\ ( J ` Y ) e. ( LFnl ` U ) ) -> ( L ` ( J ` Y ) ) e. ( LSubSp ` U ) ) |
39 |
33 37 38
|
syl2anc |
|- ( ph -> ( L ` ( J ` Y ) ) e. ( LSubSp ` U ) ) |
40 |
4 8 33 30
|
lsatssv |
|- ( ph -> B C_ V ) |
41 |
40 19
|
sseldd |
|- ( ph -> I e. V ) |
42 |
4 15 16 34 20 33 37 41
|
ellkr2 |
|- ( ph -> ( I e. ( L ` ( J ` Y ) ) <-> ( ( J ` Y ) ` I ) = Q ) ) |
43 |
22 42
|
mpbird |
|- ( ph -> I e. ( L ` ( J ` Y ) ) ) |
44 |
32 7 33 39 43
|
lspsnel5a |
|- ( ph -> ( N ` { I } ) C_ ( L ` ( J ` Y ) ) ) |
45 |
31 44
|
eqsstrd |
|- ( ph -> B C_ ( L ` ( J ` Y ) ) ) |
46 |
32
|
lsssssubg |
|- ( U e. LMod -> ( LSubSp ` U ) C_ ( SubGrp ` U ) ) |
47 |
33 46
|
syl |
|- ( ph -> ( LSubSp ` U ) C_ ( SubGrp ` U ) ) |
48 |
10
|
eldifad |
|- ( ph -> X e. V ) |
49 |
11
|
eldifad |
|- ( ph -> Y e. V ) |
50 |
|
prssi |
|- ( ( X e. V /\ Y e. V ) -> { X , Y } C_ V ) |
51 |
48 49 50
|
syl2anc |
|- ( ph -> { X , Y } C_ V ) |
52 |
1 3 4 32 2
|
dochlss |
|- ( ( ( K e. HL /\ W e. H ) /\ { X , Y } C_ V ) -> ( ._|_ ` { X , Y } ) e. ( LSubSp ` U ) ) |
53 |
9 51 52
|
syl2anc |
|- ( ph -> ( ._|_ ` { X , Y } ) e. ( LSubSp ` U ) ) |
54 |
47 53
|
sseldd |
|- ( ph -> ( ._|_ ` { X , Y } ) e. ( SubGrp ` U ) ) |
55 |
4 32 7 33 48 49
|
lspprcl |
|- ( ph -> ( N ` { X , Y } ) e. ( LSubSp ` U ) ) |
56 |
1 2 3 4 5 6 7 8 9 10 11 12
|
lcfrlem17 |
|- ( ph -> ( X .+ Y ) e. ( V \ { .0. } ) ) |
57 |
56
|
eldifad |
|- ( ph -> ( X .+ Y ) e. V ) |
58 |
57
|
snssd |
|- ( ph -> { ( X .+ Y ) } C_ V ) |
59 |
1 3 4 32 2
|
dochlss |
|- ( ( ( K e. HL /\ W e. H ) /\ { ( X .+ Y ) } C_ V ) -> ( ._|_ ` { ( X .+ Y ) } ) e. ( LSubSp ` U ) ) |
60 |
9 58 59
|
syl2anc |
|- ( ph -> ( ._|_ ` { ( X .+ Y ) } ) e. ( LSubSp ` U ) ) |
61 |
32
|
lssincl |
|- ( ( U e. LMod /\ ( N ` { X , Y } ) e. ( LSubSp ` U ) /\ ( ._|_ ` { ( X .+ Y ) } ) e. ( LSubSp ` U ) ) -> ( ( N ` { X , Y } ) i^i ( ._|_ ` { ( X .+ Y ) } ) ) e. ( LSubSp ` U ) ) |
62 |
33 55 60 61
|
syl3anc |
|- ( ph -> ( ( N ` { X , Y } ) i^i ( ._|_ ` { ( X .+ Y ) } ) ) e. ( LSubSp ` U ) ) |
63 |
13 62
|
eqeltrid |
|- ( ph -> B e. ( LSubSp ` U ) ) |
64 |
47 63
|
sseldd |
|- ( ph -> B e. ( SubGrp ` U ) ) |
65 |
47 39
|
sseldd |
|- ( ph -> ( L ` ( J ` Y ) ) e. ( SubGrp ` U ) ) |
66 |
24
|
lsmlub |
|- ( ( ( ._|_ ` { X , Y } ) e. ( SubGrp ` U ) /\ B e. ( SubGrp ` U ) /\ ( L ` ( J ` Y ) ) e. ( SubGrp ` U ) ) -> ( ( ( ._|_ ` { X , Y } ) C_ ( L ` ( J ` Y ) ) /\ B C_ ( L ` ( J ` Y ) ) ) <-> ( ( ._|_ ` { X , Y } ) ( LSSum ` U ) B ) C_ ( L ` ( J ` Y ) ) ) ) |
67 |
54 64 65 66
|
syl3anc |
|- ( ph -> ( ( ( ._|_ ` { X , Y } ) C_ ( L ` ( J ` Y ) ) /\ B C_ ( L ` ( J ` Y ) ) ) <-> ( ( ._|_ ` { X , Y } ) ( LSSum ` U ) B ) C_ ( L ` ( J ` Y ) ) ) ) |
68 |
28 45 67
|
mpbi2and |
|- ( ph -> ( ( ._|_ ` { X , Y } ) ( LSSum ` U ) B ) C_ ( L ` ( J ` Y ) ) ) |
69 |
25 68
|
eqsstrrd |
|- ( ph -> ( ._|_ ` { ( X .+ Y ) } ) C_ ( L ` ( J ` Y ) ) ) |
70 |
|
eqid |
|- ( LSHyp ` U ) = ( LSHyp ` U ) |
71 |
1 2 3 4 6 70 9 56
|
dochsnshp |
|- ( ph -> ( ._|_ ` { ( X .+ Y ) } ) e. ( LSHyp ` U ) ) |
72 |
1 2 3 4 5 14 15 17 6 34 20 21 35 36 18 9 11
|
lcfrlem13 |
|- ( ph -> ( J ` Y ) e. ( { f e. ( LFnl ` U ) | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } \ { ( 0g ` D ) } ) ) |
73 |
|
eldifsni |
|- ( ( J ` Y ) e. ( { f e. ( LFnl ` U ) | ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) } \ { ( 0g ` D ) } ) -> ( J ` Y ) =/= ( 0g ` D ) ) |
74 |
72 73
|
syl |
|- ( ph -> ( J ` Y ) =/= ( 0g ` D ) ) |
75 |
70 34 20 21 35 29 37
|
lduallkr3 |
|- ( ph -> ( ( L ` ( J ` Y ) ) e. ( LSHyp ` U ) <-> ( J ` Y ) =/= ( 0g ` D ) ) ) |
76 |
74 75
|
mpbird |
|- ( ph -> ( L ` ( J ` Y ) ) e. ( LSHyp ` U ) ) |
77 |
70 29 71 76
|
lshpcmp |
|- ( ph -> ( ( ._|_ ` { ( X .+ Y ) } ) C_ ( L ` ( J ` Y ) ) <-> ( ._|_ ` { ( X .+ Y ) } ) = ( L ` ( J ` Y ) ) ) ) |
78 |
69 77
|
mpbid |
|- ( ph -> ( ._|_ ` { ( X .+ Y ) } ) = ( L ` ( J ` Y ) ) ) |