Metamath Proof Explorer


Theorem lcfrlem24

Description: Lemma for lcfr . (Contributed by NM, 24-Feb-2015)

Ref Expression
Hypotheses lcfrlem17.h H=LHypK
lcfrlem17.o ˙=ocHKW
lcfrlem17.u U=DVecHKW
lcfrlem17.v V=BaseU
lcfrlem17.p +˙=+U
lcfrlem17.z 0˙=0U
lcfrlem17.n N=LSpanU
lcfrlem17.a A=LSAtomsU
lcfrlem17.k φKHLWH
lcfrlem17.x φXV0˙
lcfrlem17.y φYV0˙
lcfrlem17.ne φNXNY
lcfrlem22.b B=NXY˙X+˙Y
lcfrlem24.t ·˙=U
lcfrlem24.s S=ScalarU
lcfrlem24.q Q=0S
lcfrlem24.r R=BaseS
lcfrlem24.j J=xV0˙vVιkR|w˙xv=w+˙k·˙x
lcfrlem24.ib φIB
lcfrlem24.l L=LKerU
Assertion lcfrlem24 φ˙XY=LJXLJY

Proof

Step Hyp Ref Expression
1 lcfrlem17.h H=LHypK
2 lcfrlem17.o ˙=ocHKW
3 lcfrlem17.u U=DVecHKW
4 lcfrlem17.v V=BaseU
5 lcfrlem17.p +˙=+U
6 lcfrlem17.z 0˙=0U
7 lcfrlem17.n N=LSpanU
8 lcfrlem17.a A=LSAtomsU
9 lcfrlem17.k φKHLWH
10 lcfrlem17.x φXV0˙
11 lcfrlem17.y φYV0˙
12 lcfrlem17.ne φNXNY
13 lcfrlem22.b B=NXY˙X+˙Y
14 lcfrlem24.t ·˙=U
15 lcfrlem24.s S=ScalarU
16 lcfrlem24.q Q=0S
17 lcfrlem24.r R=BaseS
18 lcfrlem24.j J=xV0˙vVιkR|w˙xv=w+˙k·˙x
19 lcfrlem24.ib φIB
20 lcfrlem24.l L=LKerU
21 1 2 3 4 5 6 7 8 9 10 11 12 lcfrlem18 φ˙XY=˙X˙Y
22 eqid LFnlU=LFnlU
23 eqid LDualU=LDualU
24 eqid 0LDualU=0LDualU
25 eqid fLFnlU|˙˙Lf=Lf=fLFnlU|˙˙Lf=Lf
26 1 2 3 4 5 14 15 17 6 22 20 23 24 25 18 9 10 lcfrlem11 φLJX=˙X
27 1 2 3 4 5 14 15 17 6 22 20 23 24 25 18 9 11 lcfrlem11 φLJY=˙Y
28 26 27 ineq12d φLJXLJY=˙X˙Y
29 21 28 eqtr4d φ˙XY=LJXLJY