Metamath Proof Explorer


Theorem lcfrlem24

Description: Lemma for lcfr . (Contributed by NM, 24-Feb-2015)

Ref Expression
Hypotheses lcfrlem17.h H = LHyp K
lcfrlem17.o ˙ = ocH K W
lcfrlem17.u U = DVecH K W
lcfrlem17.v V = Base U
lcfrlem17.p + ˙ = + U
lcfrlem17.z 0 ˙ = 0 U
lcfrlem17.n N = LSpan U
lcfrlem17.a A = LSAtoms U
lcfrlem17.k φ K HL W H
lcfrlem17.x φ X V 0 ˙
lcfrlem17.y φ Y V 0 ˙
lcfrlem17.ne φ N X N Y
lcfrlem22.b B = N X Y ˙ X + ˙ Y
lcfrlem24.t · ˙ = U
lcfrlem24.s S = Scalar U
lcfrlem24.q Q = 0 S
lcfrlem24.r R = Base S
lcfrlem24.j J = x V 0 ˙ v V ι k R | w ˙ x v = w + ˙ k · ˙ x
lcfrlem24.ib φ I B
lcfrlem24.l L = LKer U
Assertion lcfrlem24 φ ˙ X Y = L J X L J Y

Proof

Step Hyp Ref Expression
1 lcfrlem17.h H = LHyp K
2 lcfrlem17.o ˙ = ocH K W
3 lcfrlem17.u U = DVecH K W
4 lcfrlem17.v V = Base U
5 lcfrlem17.p + ˙ = + U
6 lcfrlem17.z 0 ˙ = 0 U
7 lcfrlem17.n N = LSpan U
8 lcfrlem17.a A = LSAtoms U
9 lcfrlem17.k φ K HL W H
10 lcfrlem17.x φ X V 0 ˙
11 lcfrlem17.y φ Y V 0 ˙
12 lcfrlem17.ne φ N X N Y
13 lcfrlem22.b B = N X Y ˙ X + ˙ Y
14 lcfrlem24.t · ˙ = U
15 lcfrlem24.s S = Scalar U
16 lcfrlem24.q Q = 0 S
17 lcfrlem24.r R = Base S
18 lcfrlem24.j J = x V 0 ˙ v V ι k R | w ˙ x v = w + ˙ k · ˙ x
19 lcfrlem24.ib φ I B
20 lcfrlem24.l L = LKer U
21 1 2 3 4 5 6 7 8 9 10 11 12 lcfrlem18 φ ˙ X Y = ˙ X ˙ Y
22 eqid LFnl U = LFnl U
23 eqid LDual U = LDual U
24 eqid 0 LDual U = 0 LDual U
25 eqid f LFnl U | ˙ ˙ L f = L f = f LFnl U | ˙ ˙ L f = L f
26 1 2 3 4 5 14 15 17 6 22 20 23 24 25 18 9 10 lcfrlem11 φ L J X = ˙ X
27 1 2 3 4 5 14 15 17 6 22 20 23 24 25 18 9 11 lcfrlem11 φ L J Y = ˙ Y
28 26 27 ineq12d φ L J X L J Y = ˙ X ˙ Y
29 21 28 eqtr4d φ ˙ X Y = L J X L J Y