Step |
Hyp |
Ref |
Expression |
1 |
|
lcfrlem1.v |
|- V = ( Base ` U ) |
2 |
|
lcfrlem1.s |
|- S = ( Scalar ` U ) |
3 |
|
lcfrlem1.q |
|- .X. = ( .r ` S ) |
4 |
|
lcfrlem1.z |
|- .0. = ( 0g ` S ) |
5 |
|
lcfrlem1.i |
|- I = ( invr ` S ) |
6 |
|
lcfrlem1.f |
|- F = ( LFnl ` U ) |
7 |
|
lcfrlem1.d |
|- D = ( LDual ` U ) |
8 |
|
lcfrlem1.t |
|- .x. = ( .s ` D ) |
9 |
|
lcfrlem1.m |
|- .- = ( -g ` D ) |
10 |
|
lcfrlem1.u |
|- ( ph -> U e. LVec ) |
11 |
|
lcfrlem1.e |
|- ( ph -> E e. F ) |
12 |
|
lcfrlem1.g |
|- ( ph -> G e. F ) |
13 |
|
lcfrlem1.x |
|- ( ph -> X e. V ) |
14 |
|
lcfrlem1.n |
|- ( ph -> ( G ` X ) =/= .0. ) |
15 |
|
lcfrlem1.h |
|- H = ( E .- ( ( ( I ` ( G ` X ) ) .X. ( E ` X ) ) .x. G ) ) |
16 |
|
lcfrlem2.l |
|- L = ( LKer ` U ) |
17 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
18 |
|
lveclmod |
|- ( U e. LVec -> U e. LMod ) |
19 |
10 18
|
syl |
|- ( ph -> U e. LMod ) |
20 |
2
|
lmodring |
|- ( U e. LMod -> S e. Ring ) |
21 |
19 20
|
syl |
|- ( ph -> S e. Ring ) |
22 |
2
|
lvecdrng |
|- ( U e. LVec -> S e. DivRing ) |
23 |
10 22
|
syl |
|- ( ph -> S e. DivRing ) |
24 |
2 17 1 6
|
lflcl |
|- ( ( U e. LVec /\ G e. F /\ X e. V ) -> ( G ` X ) e. ( Base ` S ) ) |
25 |
10 12 13 24
|
syl3anc |
|- ( ph -> ( G ` X ) e. ( Base ` S ) ) |
26 |
17 4 5
|
drnginvrcl |
|- ( ( S e. DivRing /\ ( G ` X ) e. ( Base ` S ) /\ ( G ` X ) =/= .0. ) -> ( I ` ( G ` X ) ) e. ( Base ` S ) ) |
27 |
23 25 14 26
|
syl3anc |
|- ( ph -> ( I ` ( G ` X ) ) e. ( Base ` S ) ) |
28 |
2 17 1 6
|
lflcl |
|- ( ( U e. LVec /\ E e. F /\ X e. V ) -> ( E ` X ) e. ( Base ` S ) ) |
29 |
10 11 13 28
|
syl3anc |
|- ( ph -> ( E ` X ) e. ( Base ` S ) ) |
30 |
17 3
|
ringcl |
|- ( ( S e. Ring /\ ( I ` ( G ` X ) ) e. ( Base ` S ) /\ ( E ` X ) e. ( Base ` S ) ) -> ( ( I ` ( G ` X ) ) .X. ( E ` X ) ) e. ( Base ` S ) ) |
31 |
21 27 29 30
|
syl3anc |
|- ( ph -> ( ( I ` ( G ` X ) ) .X. ( E ` X ) ) e. ( Base ` S ) ) |
32 |
2 17 6 16 7 8 10 12 31
|
lkrss |
|- ( ph -> ( L ` G ) C_ ( L ` ( ( ( I ` ( G ` X ) ) .X. ( E ` X ) ) .x. G ) ) ) |
33 |
6 2 17 7 8 19 31 12
|
ldualvscl |
|- ( ph -> ( ( ( I ` ( G ` X ) ) .X. ( E ` X ) ) .x. G ) e. F ) |
34 |
|
ringgrp |
|- ( S e. Ring -> S e. Grp ) |
35 |
21 34
|
syl |
|- ( ph -> S e. Grp ) |
36 |
|
eqid |
|- ( 1r ` S ) = ( 1r ` S ) |
37 |
17 36
|
ringidcl |
|- ( S e. Ring -> ( 1r ` S ) e. ( Base ` S ) ) |
38 |
21 37
|
syl |
|- ( ph -> ( 1r ` S ) e. ( Base ` S ) ) |
39 |
|
eqid |
|- ( invg ` S ) = ( invg ` S ) |
40 |
17 39
|
grpinvcl |
|- ( ( S e. Grp /\ ( 1r ` S ) e. ( Base ` S ) ) -> ( ( invg ` S ) ` ( 1r ` S ) ) e. ( Base ` S ) ) |
41 |
35 38 40
|
syl2anc |
|- ( ph -> ( ( invg ` S ) ` ( 1r ` S ) ) e. ( Base ` S ) ) |
42 |
2 17 6 16 7 8 10 33 41
|
lkrss |
|- ( ph -> ( L ` ( ( ( I ` ( G ` X ) ) .X. ( E ` X ) ) .x. G ) ) C_ ( L ` ( ( ( invg ` S ) ` ( 1r ` S ) ) .x. ( ( ( I ` ( G ` X ) ) .X. ( E ` X ) ) .x. G ) ) ) ) |
43 |
32 42
|
sstrd |
|- ( ph -> ( L ` G ) C_ ( L ` ( ( ( invg ` S ) ` ( 1r ` S ) ) .x. ( ( ( I ` ( G ` X ) ) .X. ( E ` X ) ) .x. G ) ) ) ) |
44 |
|
sslin |
|- ( ( L ` G ) C_ ( L ` ( ( ( invg ` S ) ` ( 1r ` S ) ) .x. ( ( ( I ` ( G ` X ) ) .X. ( E ` X ) ) .x. G ) ) ) -> ( ( L ` E ) i^i ( L ` G ) ) C_ ( ( L ` E ) i^i ( L ` ( ( ( invg ` S ) ` ( 1r ` S ) ) .x. ( ( ( I ` ( G ` X ) ) .X. ( E ` X ) ) .x. G ) ) ) ) ) |
45 |
43 44
|
syl |
|- ( ph -> ( ( L ` E ) i^i ( L ` G ) ) C_ ( ( L ` E ) i^i ( L ` ( ( ( invg ` S ) ` ( 1r ` S ) ) .x. ( ( ( I ` ( G ` X ) ) .X. ( E ` X ) ) .x. G ) ) ) ) ) |
46 |
|
eqid |
|- ( +g ` D ) = ( +g ` D ) |
47 |
6 2 17 7 8 19 41 33
|
ldualvscl |
|- ( ph -> ( ( ( invg ` S ) ` ( 1r ` S ) ) .x. ( ( ( I ` ( G ` X ) ) .X. ( E ` X ) ) .x. G ) ) e. F ) |
48 |
6 16 7 46 19 11 47
|
lkrin |
|- ( ph -> ( ( L ` E ) i^i ( L ` ( ( ( invg ` S ) ` ( 1r ` S ) ) .x. ( ( ( I ` ( G ` X ) ) .X. ( E ` X ) ) .x. G ) ) ) ) C_ ( L ` ( E ( +g ` D ) ( ( ( invg ` S ) ` ( 1r ` S ) ) .x. ( ( ( I ` ( G ` X ) ) .X. ( E ` X ) ) .x. G ) ) ) ) ) |
49 |
45 48
|
sstrd |
|- ( ph -> ( ( L ` E ) i^i ( L ` G ) ) C_ ( L ` ( E ( +g ` D ) ( ( ( invg ` S ) ` ( 1r ` S ) ) .x. ( ( ( I ` ( G ` X ) ) .X. ( E ` X ) ) .x. G ) ) ) ) ) |
50 |
15
|
fveq2i |
|- ( L ` H ) = ( L ` ( E .- ( ( ( I ` ( G ` X ) ) .X. ( E ` X ) ) .x. G ) ) ) |
51 |
2 39 36 6 7 46 8 9 19 11 33
|
ldualvsub |
|- ( ph -> ( E .- ( ( ( I ` ( G ` X ) ) .X. ( E ` X ) ) .x. G ) ) = ( E ( +g ` D ) ( ( ( invg ` S ) ` ( 1r ` S ) ) .x. ( ( ( I ` ( G ` X ) ) .X. ( E ` X ) ) .x. G ) ) ) ) |
52 |
51
|
fveq2d |
|- ( ph -> ( L ` ( E .- ( ( ( I ` ( G ` X ) ) .X. ( E ` X ) ) .x. G ) ) ) = ( L ` ( E ( +g ` D ) ( ( ( invg ` S ) ` ( 1r ` S ) ) .x. ( ( ( I ` ( G ` X ) ) .X. ( E ` X ) ) .x. G ) ) ) ) ) |
53 |
50 52
|
eqtr2id |
|- ( ph -> ( L ` ( E ( +g ` D ) ( ( ( invg ` S ) ` ( 1r ` S ) ) .x. ( ( ( I ` ( G ` X ) ) .X. ( E ` X ) ) .x. G ) ) ) ) = ( L ` H ) ) |
54 |
49 53
|
sseqtrd |
|- ( ph -> ( ( L ` E ) i^i ( L ` G ) ) C_ ( L ` H ) ) |