Metamath Proof Explorer


Theorem lcfrlem3

Description: Lemma for lcfr . (Contributed by NM, 27-Feb-2015)

Ref Expression
Hypotheses lcfrlem1.v
|- V = ( Base ` U )
lcfrlem1.s
|- S = ( Scalar ` U )
lcfrlem1.q
|- .X. = ( .r ` S )
lcfrlem1.z
|- .0. = ( 0g ` S )
lcfrlem1.i
|- I = ( invr ` S )
lcfrlem1.f
|- F = ( LFnl ` U )
lcfrlem1.d
|- D = ( LDual ` U )
lcfrlem1.t
|- .x. = ( .s ` D )
lcfrlem1.m
|- .- = ( -g ` D )
lcfrlem1.u
|- ( ph -> U e. LVec )
lcfrlem1.e
|- ( ph -> E e. F )
lcfrlem1.g
|- ( ph -> G e. F )
lcfrlem1.x
|- ( ph -> X e. V )
lcfrlem1.n
|- ( ph -> ( G ` X ) =/= .0. )
lcfrlem1.h
|- H = ( E .- ( ( ( I ` ( G ` X ) ) .X. ( E ` X ) ) .x. G ) )
lcfrlem2.l
|- L = ( LKer ` U )
Assertion lcfrlem3
|- ( ph -> X e. ( L ` H ) )

Proof

Step Hyp Ref Expression
1 lcfrlem1.v
 |-  V = ( Base ` U )
2 lcfrlem1.s
 |-  S = ( Scalar ` U )
3 lcfrlem1.q
 |-  .X. = ( .r ` S )
4 lcfrlem1.z
 |-  .0. = ( 0g ` S )
5 lcfrlem1.i
 |-  I = ( invr ` S )
6 lcfrlem1.f
 |-  F = ( LFnl ` U )
7 lcfrlem1.d
 |-  D = ( LDual ` U )
8 lcfrlem1.t
 |-  .x. = ( .s ` D )
9 lcfrlem1.m
 |-  .- = ( -g ` D )
10 lcfrlem1.u
 |-  ( ph -> U e. LVec )
11 lcfrlem1.e
 |-  ( ph -> E e. F )
12 lcfrlem1.g
 |-  ( ph -> G e. F )
13 lcfrlem1.x
 |-  ( ph -> X e. V )
14 lcfrlem1.n
 |-  ( ph -> ( G ` X ) =/= .0. )
15 lcfrlem1.h
 |-  H = ( E .- ( ( ( I ` ( G ` X ) ) .X. ( E ` X ) ) .x. G ) )
16 lcfrlem2.l
 |-  L = ( LKer ` U )
17 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 lcfrlem1
 |-  ( ph -> ( H ` X ) = .0. )
18 lveclmod
 |-  ( U e. LVec -> U e. LMod )
19 10 18 syl
 |-  ( ph -> U e. LMod )
20 eqid
 |-  ( Base ` S ) = ( Base ` S )
21 2 lmodring
 |-  ( U e. LMod -> S e. Ring )
22 19 21 syl
 |-  ( ph -> S e. Ring )
23 2 lvecdrng
 |-  ( U e. LVec -> S e. DivRing )
24 10 23 syl
 |-  ( ph -> S e. DivRing )
25 2 20 1 6 lflcl
 |-  ( ( U e. LVec /\ G e. F /\ X e. V ) -> ( G ` X ) e. ( Base ` S ) )
26 10 12 13 25 syl3anc
 |-  ( ph -> ( G ` X ) e. ( Base ` S ) )
27 20 4 5 drnginvrcl
 |-  ( ( S e. DivRing /\ ( G ` X ) e. ( Base ` S ) /\ ( G ` X ) =/= .0. ) -> ( I ` ( G ` X ) ) e. ( Base ` S ) )
28 24 26 14 27 syl3anc
 |-  ( ph -> ( I ` ( G ` X ) ) e. ( Base ` S ) )
29 2 20 1 6 lflcl
 |-  ( ( U e. LVec /\ E e. F /\ X e. V ) -> ( E ` X ) e. ( Base ` S ) )
30 10 11 13 29 syl3anc
 |-  ( ph -> ( E ` X ) e. ( Base ` S ) )
31 20 3 ringcl
 |-  ( ( S e. Ring /\ ( I ` ( G ` X ) ) e. ( Base ` S ) /\ ( E ` X ) e. ( Base ` S ) ) -> ( ( I ` ( G ` X ) ) .X. ( E ` X ) ) e. ( Base ` S ) )
32 22 28 30 31 syl3anc
 |-  ( ph -> ( ( I ` ( G ` X ) ) .X. ( E ` X ) ) e. ( Base ` S ) )
33 6 2 20 7 8 19 32 12 ldualvscl
 |-  ( ph -> ( ( ( I ` ( G ` X ) ) .X. ( E ` X ) ) .x. G ) e. F )
34 6 7 9 19 11 33 ldualvsubcl
 |-  ( ph -> ( E .- ( ( ( I ` ( G ` X ) ) .X. ( E ` X ) ) .x. G ) ) e. F )
35 15 34 eqeltrid
 |-  ( ph -> H e. F )
36 1 2 4 6 16 10 35 13 ellkr2
 |-  ( ph -> ( X e. ( L ` H ) <-> ( H ` X ) = .0. ) )
37 17 36 mpbird
 |-  ( ph -> X e. ( L ` H ) )