Step |
Hyp |
Ref |
Expression |
1 |
|
lcfrlem1.v |
|- V = ( Base ` U ) |
2 |
|
lcfrlem1.s |
|- S = ( Scalar ` U ) |
3 |
|
lcfrlem1.q |
|- .X. = ( .r ` S ) |
4 |
|
lcfrlem1.z |
|- .0. = ( 0g ` S ) |
5 |
|
lcfrlem1.i |
|- I = ( invr ` S ) |
6 |
|
lcfrlem1.f |
|- F = ( LFnl ` U ) |
7 |
|
lcfrlem1.d |
|- D = ( LDual ` U ) |
8 |
|
lcfrlem1.t |
|- .x. = ( .s ` D ) |
9 |
|
lcfrlem1.m |
|- .- = ( -g ` D ) |
10 |
|
lcfrlem1.u |
|- ( ph -> U e. LVec ) |
11 |
|
lcfrlem1.e |
|- ( ph -> E e. F ) |
12 |
|
lcfrlem1.g |
|- ( ph -> G e. F ) |
13 |
|
lcfrlem1.x |
|- ( ph -> X e. V ) |
14 |
|
lcfrlem1.n |
|- ( ph -> ( G ` X ) =/= .0. ) |
15 |
|
lcfrlem1.h |
|- H = ( E .- ( ( ( I ` ( G ` X ) ) .X. ( E ` X ) ) .x. G ) ) |
16 |
|
lcfrlem2.l |
|- L = ( LKer ` U ) |
17 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
lcfrlem1 |
|- ( ph -> ( H ` X ) = .0. ) |
18 |
|
lveclmod |
|- ( U e. LVec -> U e. LMod ) |
19 |
10 18
|
syl |
|- ( ph -> U e. LMod ) |
20 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
21 |
2
|
lmodring |
|- ( U e. LMod -> S e. Ring ) |
22 |
19 21
|
syl |
|- ( ph -> S e. Ring ) |
23 |
2
|
lvecdrng |
|- ( U e. LVec -> S e. DivRing ) |
24 |
10 23
|
syl |
|- ( ph -> S e. DivRing ) |
25 |
2 20 1 6
|
lflcl |
|- ( ( U e. LVec /\ G e. F /\ X e. V ) -> ( G ` X ) e. ( Base ` S ) ) |
26 |
10 12 13 25
|
syl3anc |
|- ( ph -> ( G ` X ) e. ( Base ` S ) ) |
27 |
20 4 5
|
drnginvrcl |
|- ( ( S e. DivRing /\ ( G ` X ) e. ( Base ` S ) /\ ( G ` X ) =/= .0. ) -> ( I ` ( G ` X ) ) e. ( Base ` S ) ) |
28 |
24 26 14 27
|
syl3anc |
|- ( ph -> ( I ` ( G ` X ) ) e. ( Base ` S ) ) |
29 |
2 20 1 6
|
lflcl |
|- ( ( U e. LVec /\ E e. F /\ X e. V ) -> ( E ` X ) e. ( Base ` S ) ) |
30 |
10 11 13 29
|
syl3anc |
|- ( ph -> ( E ` X ) e. ( Base ` S ) ) |
31 |
20 3
|
ringcl |
|- ( ( S e. Ring /\ ( I ` ( G ` X ) ) e. ( Base ` S ) /\ ( E ` X ) e. ( Base ` S ) ) -> ( ( I ` ( G ` X ) ) .X. ( E ` X ) ) e. ( Base ` S ) ) |
32 |
22 28 30 31
|
syl3anc |
|- ( ph -> ( ( I ` ( G ` X ) ) .X. ( E ` X ) ) e. ( Base ` S ) ) |
33 |
6 2 20 7 8 19 32 12
|
ldualvscl |
|- ( ph -> ( ( ( I ` ( G ` X ) ) .X. ( E ` X ) ) .x. G ) e. F ) |
34 |
6 7 9 19 11 33
|
ldualvsubcl |
|- ( ph -> ( E .- ( ( ( I ` ( G ` X ) ) .X. ( E ` X ) ) .x. G ) ) e. F ) |
35 |
15 34
|
eqeltrid |
|- ( ph -> H e. F ) |
36 |
1 2 4 6 16 10 35 13
|
ellkr2 |
|- ( ph -> ( X e. ( L ` H ) <-> ( H ` X ) = .0. ) ) |
37 |
17 36
|
mpbird |
|- ( ph -> X e. ( L ` H ) ) |