Step |
Hyp |
Ref |
Expression |
1 |
|
lcfrlem1.v |
|- V = ( Base ` U ) |
2 |
|
lcfrlem1.s |
|- S = ( Scalar ` U ) |
3 |
|
lcfrlem1.q |
|- .X. = ( .r ` S ) |
4 |
|
lcfrlem1.z |
|- .0. = ( 0g ` S ) |
5 |
|
lcfrlem1.i |
|- I = ( invr ` S ) |
6 |
|
lcfrlem1.f |
|- F = ( LFnl ` U ) |
7 |
|
lcfrlem1.d |
|- D = ( LDual ` U ) |
8 |
|
lcfrlem1.t |
|- .x. = ( .s ` D ) |
9 |
|
lcfrlem1.m |
|- .- = ( -g ` D ) |
10 |
|
lcfrlem1.u |
|- ( ph -> U e. LVec ) |
11 |
|
lcfrlem1.e |
|- ( ph -> E e. F ) |
12 |
|
lcfrlem1.g |
|- ( ph -> G e. F ) |
13 |
|
lcfrlem1.x |
|- ( ph -> X e. V ) |
14 |
|
lcfrlem1.n |
|- ( ph -> ( G ` X ) =/= .0. ) |
15 |
|
lcfrlem1.h |
|- H = ( E .- ( ( ( I ` ( G ` X ) ) .X. ( E ` X ) ) .x. G ) ) |
16 |
15
|
fveq1i |
|- ( H ` X ) = ( ( E .- ( ( ( I ` ( G ` X ) ) .X. ( E ` X ) ) .x. G ) ) ` X ) |
17 |
|
eqid |
|- ( -g ` S ) = ( -g ` S ) |
18 |
|
lveclmod |
|- ( U e. LVec -> U e. LMod ) |
19 |
10 18
|
syl |
|- ( ph -> U e. LMod ) |
20 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
21 |
2
|
lvecdrng |
|- ( U e. LVec -> S e. DivRing ) |
22 |
10 21
|
syl |
|- ( ph -> S e. DivRing ) |
23 |
2 20 1 6
|
lflcl |
|- ( ( U e. LVec /\ G e. F /\ X e. V ) -> ( G ` X ) e. ( Base ` S ) ) |
24 |
10 12 13 23
|
syl3anc |
|- ( ph -> ( G ` X ) e. ( Base ` S ) ) |
25 |
20 4 5
|
drnginvrcl |
|- ( ( S e. DivRing /\ ( G ` X ) e. ( Base ` S ) /\ ( G ` X ) =/= .0. ) -> ( I ` ( G ` X ) ) e. ( Base ` S ) ) |
26 |
22 24 14 25
|
syl3anc |
|- ( ph -> ( I ` ( G ` X ) ) e. ( Base ` S ) ) |
27 |
2 20 1 6
|
lflcl |
|- ( ( U e. LVec /\ E e. F /\ X e. V ) -> ( E ` X ) e. ( Base ` S ) ) |
28 |
10 11 13 27
|
syl3anc |
|- ( ph -> ( E ` X ) e. ( Base ` S ) ) |
29 |
2 20 3
|
lmodmcl |
|- ( ( U e. LMod /\ ( I ` ( G ` X ) ) e. ( Base ` S ) /\ ( E ` X ) e. ( Base ` S ) ) -> ( ( I ` ( G ` X ) ) .X. ( E ` X ) ) e. ( Base ` S ) ) |
30 |
19 26 28 29
|
syl3anc |
|- ( ph -> ( ( I ` ( G ` X ) ) .X. ( E ` X ) ) e. ( Base ` S ) ) |
31 |
6 2 20 7 8 19 30 12
|
ldualvscl |
|- ( ph -> ( ( ( I ` ( G ` X ) ) .X. ( E ` X ) ) .x. G ) e. F ) |
32 |
1 2 17 6 7 9 19 11 31 13
|
ldualvsubval |
|- ( ph -> ( ( E .- ( ( ( I ` ( G ` X ) ) .X. ( E ` X ) ) .x. G ) ) ` X ) = ( ( E ` X ) ( -g ` S ) ( ( ( ( I ` ( G ` X ) ) .X. ( E ` X ) ) .x. G ) ` X ) ) ) |
33 |
6 1 2 20 3 7 8 10 30 12 13
|
ldualvsval |
|- ( ph -> ( ( ( ( I ` ( G ` X ) ) .X. ( E ` X ) ) .x. G ) ` X ) = ( ( G ` X ) .X. ( ( I ` ( G ` X ) ) .X. ( E ` X ) ) ) ) |
34 |
|
eqid |
|- ( 1r ` S ) = ( 1r ` S ) |
35 |
20 4 3 34 5
|
drnginvrr |
|- ( ( S e. DivRing /\ ( G ` X ) e. ( Base ` S ) /\ ( G ` X ) =/= .0. ) -> ( ( G ` X ) .X. ( I ` ( G ` X ) ) ) = ( 1r ` S ) ) |
36 |
22 24 14 35
|
syl3anc |
|- ( ph -> ( ( G ` X ) .X. ( I ` ( G ` X ) ) ) = ( 1r ` S ) ) |
37 |
36
|
oveq1d |
|- ( ph -> ( ( ( G ` X ) .X. ( I ` ( G ` X ) ) ) .X. ( E ` X ) ) = ( ( 1r ` S ) .X. ( E ` X ) ) ) |
38 |
2
|
lmodring |
|- ( U e. LMod -> S e. Ring ) |
39 |
19 38
|
syl |
|- ( ph -> S e. Ring ) |
40 |
20 3
|
ringass |
|- ( ( S e. Ring /\ ( ( G ` X ) e. ( Base ` S ) /\ ( I ` ( G ` X ) ) e. ( Base ` S ) /\ ( E ` X ) e. ( Base ` S ) ) ) -> ( ( ( G ` X ) .X. ( I ` ( G ` X ) ) ) .X. ( E ` X ) ) = ( ( G ` X ) .X. ( ( I ` ( G ` X ) ) .X. ( E ` X ) ) ) ) |
41 |
39 24 26 28 40
|
syl13anc |
|- ( ph -> ( ( ( G ` X ) .X. ( I ` ( G ` X ) ) ) .X. ( E ` X ) ) = ( ( G ` X ) .X. ( ( I ` ( G ` X ) ) .X. ( E ` X ) ) ) ) |
42 |
20 3 34
|
ringlidm |
|- ( ( S e. Ring /\ ( E ` X ) e. ( Base ` S ) ) -> ( ( 1r ` S ) .X. ( E ` X ) ) = ( E ` X ) ) |
43 |
39 28 42
|
syl2anc |
|- ( ph -> ( ( 1r ` S ) .X. ( E ` X ) ) = ( E ` X ) ) |
44 |
37 41 43
|
3eqtr3d |
|- ( ph -> ( ( G ` X ) .X. ( ( I ` ( G ` X ) ) .X. ( E ` X ) ) ) = ( E ` X ) ) |
45 |
33 44
|
eqtrd |
|- ( ph -> ( ( ( ( I ` ( G ` X ) ) .X. ( E ` X ) ) .x. G ) ` X ) = ( E ` X ) ) |
46 |
45
|
oveq2d |
|- ( ph -> ( ( E ` X ) ( -g ` S ) ( ( ( ( I ` ( G ` X ) ) .X. ( E ` X ) ) .x. G ) ` X ) ) = ( ( E ` X ) ( -g ` S ) ( E ` X ) ) ) |
47 |
2
|
lmodfgrp |
|- ( U e. LMod -> S e. Grp ) |
48 |
19 47
|
syl |
|- ( ph -> S e. Grp ) |
49 |
20 4 17
|
grpsubid |
|- ( ( S e. Grp /\ ( E ` X ) e. ( Base ` S ) ) -> ( ( E ` X ) ( -g ` S ) ( E ` X ) ) = .0. ) |
50 |
48 28 49
|
syl2anc |
|- ( ph -> ( ( E ` X ) ( -g ` S ) ( E ` X ) ) = .0. ) |
51 |
32 46 50
|
3eqtrd |
|- ( ph -> ( ( E .- ( ( ( I ` ( G ` X ) ) .X. ( E ` X ) ) .x. G ) ) ` X ) = .0. ) |
52 |
16 51
|
syl5eq |
|- ( ph -> ( H ` X ) = .0. ) |