| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcfrlem1.v |
|
| 2 |
|
lcfrlem1.s |
|
| 3 |
|
lcfrlem1.q |
|
| 4 |
|
lcfrlem1.z |
|
| 5 |
|
lcfrlem1.i |
|
| 6 |
|
lcfrlem1.f |
|
| 7 |
|
lcfrlem1.d |
|
| 8 |
|
lcfrlem1.t |
|
| 9 |
|
lcfrlem1.m |
|
| 10 |
|
lcfrlem1.u |
|
| 11 |
|
lcfrlem1.e |
|
| 12 |
|
lcfrlem1.g |
|
| 13 |
|
lcfrlem1.x |
|
| 14 |
|
lcfrlem1.n |
|
| 15 |
|
lcfrlem1.h |
|
| 16 |
15
|
fveq1i |
|
| 17 |
|
eqid |
|
| 18 |
|
lveclmod |
|
| 19 |
10 18
|
syl |
|
| 20 |
|
eqid |
|
| 21 |
2
|
lvecdrng |
|
| 22 |
10 21
|
syl |
|
| 23 |
2 20 1 6
|
lflcl |
|
| 24 |
10 12 13 23
|
syl3anc |
|
| 25 |
20 4 5
|
drnginvrcl |
|
| 26 |
22 24 14 25
|
syl3anc |
|
| 27 |
2 20 1 6
|
lflcl |
|
| 28 |
10 11 13 27
|
syl3anc |
|
| 29 |
2 20 3
|
lmodmcl |
|
| 30 |
19 26 28 29
|
syl3anc |
|
| 31 |
6 2 20 7 8 19 30 12
|
ldualvscl |
|
| 32 |
1 2 17 6 7 9 19 11 31 13
|
ldualvsubval |
|
| 33 |
6 1 2 20 3 7 8 10 30 12 13
|
ldualvsval |
|
| 34 |
|
eqid |
|
| 35 |
20 4 3 34 5
|
drnginvrr |
|
| 36 |
22 24 14 35
|
syl3anc |
|
| 37 |
36
|
oveq1d |
|
| 38 |
2
|
lmodring |
|
| 39 |
19 38
|
syl |
|
| 40 |
20 3
|
ringass |
|
| 41 |
39 24 26 28 40
|
syl13anc |
|
| 42 |
20 3 34
|
ringlidm |
|
| 43 |
39 28 42
|
syl2anc |
|
| 44 |
37 41 43
|
3eqtr3d |
|
| 45 |
33 44
|
eqtrd |
|
| 46 |
45
|
oveq2d |
|
| 47 |
2
|
lmodfgrp |
|
| 48 |
19 47
|
syl |
|
| 49 |
20 4 17
|
grpsubid |
|
| 50 |
48 28 49
|
syl2anc |
|
| 51 |
32 46 50
|
3eqtrd |
|
| 52 |
16 51
|
eqtrid |
|