Step |
Hyp |
Ref |
Expression |
1 |
|
lcfrlem1.v |
|
2 |
|
lcfrlem1.s |
|
3 |
|
lcfrlem1.q |
|
4 |
|
lcfrlem1.z |
|
5 |
|
lcfrlem1.i |
|
6 |
|
lcfrlem1.f |
|
7 |
|
lcfrlem1.d |
|
8 |
|
lcfrlem1.t |
|
9 |
|
lcfrlem1.m |
|
10 |
|
lcfrlem1.u |
|
11 |
|
lcfrlem1.e |
|
12 |
|
lcfrlem1.g |
|
13 |
|
lcfrlem1.x |
|
14 |
|
lcfrlem1.n |
|
15 |
|
lcfrlem1.h |
|
16 |
15
|
fveq1i |
|
17 |
|
eqid |
|
18 |
|
lveclmod |
|
19 |
10 18
|
syl |
|
20 |
|
eqid |
|
21 |
2
|
lvecdrng |
|
22 |
10 21
|
syl |
|
23 |
2 20 1 6
|
lflcl |
|
24 |
10 12 13 23
|
syl3anc |
|
25 |
20 4 5
|
drnginvrcl |
|
26 |
22 24 14 25
|
syl3anc |
|
27 |
2 20 1 6
|
lflcl |
|
28 |
10 11 13 27
|
syl3anc |
|
29 |
2 20 3
|
lmodmcl |
|
30 |
19 26 28 29
|
syl3anc |
|
31 |
6 2 20 7 8 19 30 12
|
ldualvscl |
|
32 |
1 2 17 6 7 9 19 11 31 13
|
ldualvsubval |
|
33 |
6 1 2 20 3 7 8 10 30 12 13
|
ldualvsval |
|
34 |
|
eqid |
|
35 |
20 4 3 34 5
|
drnginvrr |
|
36 |
22 24 14 35
|
syl3anc |
|
37 |
36
|
oveq1d |
|
38 |
2
|
lmodring |
|
39 |
19 38
|
syl |
|
40 |
20 3
|
ringass |
|
41 |
39 24 26 28 40
|
syl13anc |
|
42 |
20 3 34
|
ringlidm |
|
43 |
39 28 42
|
syl2anc |
|
44 |
37 41 43
|
3eqtr3d |
|
45 |
33 44
|
eqtrd |
|
46 |
45
|
oveq2d |
|
47 |
2
|
lmodfgrp |
|
48 |
19 47
|
syl |
|
49 |
20 4 17
|
grpsubid |
|
50 |
48 28 49
|
syl2anc |
|
51 |
32 46 50
|
3eqtrd |
|
52 |
16 51
|
syl5eq |
|