Metamath Proof Explorer


Theorem lcfrlem1

Description: Lemma for lcfr . Note that X is z in Mario's notes. (Contributed by NM, 27-Feb-2015)

Ref Expression
Hypotheses lcfrlem1.v V = Base U
lcfrlem1.s S = Scalar U
lcfrlem1.q × ˙ = S
lcfrlem1.z 0 ˙ = 0 S
lcfrlem1.i I = inv r S
lcfrlem1.f F = LFnl U
lcfrlem1.d D = LDual U
lcfrlem1.t · ˙ = D
lcfrlem1.m - ˙ = - D
lcfrlem1.u φ U LVec
lcfrlem1.e φ E F
lcfrlem1.g φ G F
lcfrlem1.x φ X V
lcfrlem1.n φ G X 0 ˙
lcfrlem1.h H = E - ˙ I G X × ˙ E X · ˙ G
Assertion lcfrlem1 φ H X = 0 ˙

Proof

Step Hyp Ref Expression
1 lcfrlem1.v V = Base U
2 lcfrlem1.s S = Scalar U
3 lcfrlem1.q × ˙ = S
4 lcfrlem1.z 0 ˙ = 0 S
5 lcfrlem1.i I = inv r S
6 lcfrlem1.f F = LFnl U
7 lcfrlem1.d D = LDual U
8 lcfrlem1.t · ˙ = D
9 lcfrlem1.m - ˙ = - D
10 lcfrlem1.u φ U LVec
11 lcfrlem1.e φ E F
12 lcfrlem1.g φ G F
13 lcfrlem1.x φ X V
14 lcfrlem1.n φ G X 0 ˙
15 lcfrlem1.h H = E - ˙ I G X × ˙ E X · ˙ G
16 15 fveq1i H X = E - ˙ I G X × ˙ E X · ˙ G X
17 eqid - S = - S
18 lveclmod U LVec U LMod
19 10 18 syl φ U LMod
20 eqid Base S = Base S
21 2 lvecdrng U LVec S DivRing
22 10 21 syl φ S DivRing
23 2 20 1 6 lflcl U LVec G F X V G X Base S
24 10 12 13 23 syl3anc φ G X Base S
25 20 4 5 drnginvrcl S DivRing G X Base S G X 0 ˙ I G X Base S
26 22 24 14 25 syl3anc φ I G X Base S
27 2 20 1 6 lflcl U LVec E F X V E X Base S
28 10 11 13 27 syl3anc φ E X Base S
29 2 20 3 lmodmcl U LMod I G X Base S E X Base S I G X × ˙ E X Base S
30 19 26 28 29 syl3anc φ I G X × ˙ E X Base S
31 6 2 20 7 8 19 30 12 ldualvscl φ I G X × ˙ E X · ˙ G F
32 1 2 17 6 7 9 19 11 31 13 ldualvsubval φ E - ˙ I G X × ˙ E X · ˙ G X = E X - S I G X × ˙ E X · ˙ G X
33 6 1 2 20 3 7 8 10 30 12 13 ldualvsval φ I G X × ˙ E X · ˙ G X = G X × ˙ I G X × ˙ E X
34 eqid 1 S = 1 S
35 20 4 3 34 5 drnginvrr S DivRing G X Base S G X 0 ˙ G X × ˙ I G X = 1 S
36 22 24 14 35 syl3anc φ G X × ˙ I G X = 1 S
37 36 oveq1d φ G X × ˙ I G X × ˙ E X = 1 S × ˙ E X
38 2 lmodring U LMod S Ring
39 19 38 syl φ S Ring
40 20 3 ringass S Ring G X Base S I G X Base S E X Base S G X × ˙ I G X × ˙ E X = G X × ˙ I G X × ˙ E X
41 39 24 26 28 40 syl13anc φ G X × ˙ I G X × ˙ E X = G X × ˙ I G X × ˙ E X
42 20 3 34 ringlidm S Ring E X Base S 1 S × ˙ E X = E X
43 39 28 42 syl2anc φ 1 S × ˙ E X = E X
44 37 41 43 3eqtr3d φ G X × ˙ I G X × ˙ E X = E X
45 33 44 eqtrd φ I G X × ˙ E X · ˙ G X = E X
46 45 oveq2d φ E X - S I G X × ˙ E X · ˙ G X = E X - S E X
47 2 lmodfgrp U LMod S Grp
48 19 47 syl φ S Grp
49 20 4 17 grpsubid S Grp E X Base S E X - S E X = 0 ˙
50 48 28 49 syl2anc φ E X - S E X = 0 ˙
51 32 46 50 3eqtrd φ E - ˙ I G X × ˙ E X · ˙ G X = 0 ˙
52 16 51 syl5eq φ H X = 0 ˙