Step |
Hyp |
Ref |
Expression |
1 |
|
lcfrlem1.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
2 |
|
lcfrlem1.s |
⊢ 𝑆 = ( Scalar ‘ 𝑈 ) |
3 |
|
lcfrlem1.q |
⊢ × = ( .r ‘ 𝑆 ) |
4 |
|
lcfrlem1.z |
⊢ 0 = ( 0g ‘ 𝑆 ) |
5 |
|
lcfrlem1.i |
⊢ 𝐼 = ( invr ‘ 𝑆 ) |
6 |
|
lcfrlem1.f |
⊢ 𝐹 = ( LFnl ‘ 𝑈 ) |
7 |
|
lcfrlem1.d |
⊢ 𝐷 = ( LDual ‘ 𝑈 ) |
8 |
|
lcfrlem1.t |
⊢ · = ( ·𝑠 ‘ 𝐷 ) |
9 |
|
lcfrlem1.m |
⊢ − = ( -g ‘ 𝐷 ) |
10 |
|
lcfrlem1.u |
⊢ ( 𝜑 → 𝑈 ∈ LVec ) |
11 |
|
lcfrlem1.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝐹 ) |
12 |
|
lcfrlem1.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
13 |
|
lcfrlem1.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
14 |
|
lcfrlem1.n |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑋 ) ≠ 0 ) |
15 |
|
lcfrlem1.h |
⊢ 𝐻 = ( 𝐸 − ( ( ( 𝐼 ‘ ( 𝐺 ‘ 𝑋 ) ) × ( 𝐸 ‘ 𝑋 ) ) · 𝐺 ) ) |
16 |
15
|
fveq1i |
⊢ ( 𝐻 ‘ 𝑋 ) = ( ( 𝐸 − ( ( ( 𝐼 ‘ ( 𝐺 ‘ 𝑋 ) ) × ( 𝐸 ‘ 𝑋 ) ) · 𝐺 ) ) ‘ 𝑋 ) |
17 |
|
eqid |
⊢ ( -g ‘ 𝑆 ) = ( -g ‘ 𝑆 ) |
18 |
|
lveclmod |
⊢ ( 𝑈 ∈ LVec → 𝑈 ∈ LMod ) |
19 |
10 18
|
syl |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
20 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
21 |
2
|
lvecdrng |
⊢ ( 𝑈 ∈ LVec → 𝑆 ∈ DivRing ) |
22 |
10 21
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ DivRing ) |
23 |
2 20 1 6
|
lflcl |
⊢ ( ( 𝑈 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝑋 ∈ 𝑉 ) → ( 𝐺 ‘ 𝑋 ) ∈ ( Base ‘ 𝑆 ) ) |
24 |
10 12 13 23
|
syl3anc |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑋 ) ∈ ( Base ‘ 𝑆 ) ) |
25 |
20 4 5
|
drnginvrcl |
⊢ ( ( 𝑆 ∈ DivRing ∧ ( 𝐺 ‘ 𝑋 ) ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐺 ‘ 𝑋 ) ≠ 0 ) → ( 𝐼 ‘ ( 𝐺 ‘ 𝑋 ) ) ∈ ( Base ‘ 𝑆 ) ) |
26 |
22 24 14 25
|
syl3anc |
⊢ ( 𝜑 → ( 𝐼 ‘ ( 𝐺 ‘ 𝑋 ) ) ∈ ( Base ‘ 𝑆 ) ) |
27 |
2 20 1 6
|
lflcl |
⊢ ( ( 𝑈 ∈ LVec ∧ 𝐸 ∈ 𝐹 ∧ 𝑋 ∈ 𝑉 ) → ( 𝐸 ‘ 𝑋 ) ∈ ( Base ‘ 𝑆 ) ) |
28 |
10 11 13 27
|
syl3anc |
⊢ ( 𝜑 → ( 𝐸 ‘ 𝑋 ) ∈ ( Base ‘ 𝑆 ) ) |
29 |
2 20 3
|
lmodmcl |
⊢ ( ( 𝑈 ∈ LMod ∧ ( 𝐼 ‘ ( 𝐺 ‘ 𝑋 ) ) ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( Base ‘ 𝑆 ) ) → ( ( 𝐼 ‘ ( 𝐺 ‘ 𝑋 ) ) × ( 𝐸 ‘ 𝑋 ) ) ∈ ( Base ‘ 𝑆 ) ) |
30 |
19 26 28 29
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐼 ‘ ( 𝐺 ‘ 𝑋 ) ) × ( 𝐸 ‘ 𝑋 ) ) ∈ ( Base ‘ 𝑆 ) ) |
31 |
6 2 20 7 8 19 30 12
|
ldualvscl |
⊢ ( 𝜑 → ( ( ( 𝐼 ‘ ( 𝐺 ‘ 𝑋 ) ) × ( 𝐸 ‘ 𝑋 ) ) · 𝐺 ) ∈ 𝐹 ) |
32 |
1 2 17 6 7 9 19 11 31 13
|
ldualvsubval |
⊢ ( 𝜑 → ( ( 𝐸 − ( ( ( 𝐼 ‘ ( 𝐺 ‘ 𝑋 ) ) × ( 𝐸 ‘ 𝑋 ) ) · 𝐺 ) ) ‘ 𝑋 ) = ( ( 𝐸 ‘ 𝑋 ) ( -g ‘ 𝑆 ) ( ( ( ( 𝐼 ‘ ( 𝐺 ‘ 𝑋 ) ) × ( 𝐸 ‘ 𝑋 ) ) · 𝐺 ) ‘ 𝑋 ) ) ) |
33 |
6 1 2 20 3 7 8 10 30 12 13
|
ldualvsval |
⊢ ( 𝜑 → ( ( ( ( 𝐼 ‘ ( 𝐺 ‘ 𝑋 ) ) × ( 𝐸 ‘ 𝑋 ) ) · 𝐺 ) ‘ 𝑋 ) = ( ( 𝐺 ‘ 𝑋 ) × ( ( 𝐼 ‘ ( 𝐺 ‘ 𝑋 ) ) × ( 𝐸 ‘ 𝑋 ) ) ) ) |
34 |
|
eqid |
⊢ ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑆 ) |
35 |
20 4 3 34 5
|
drnginvrr |
⊢ ( ( 𝑆 ∈ DivRing ∧ ( 𝐺 ‘ 𝑋 ) ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐺 ‘ 𝑋 ) ≠ 0 ) → ( ( 𝐺 ‘ 𝑋 ) × ( 𝐼 ‘ ( 𝐺 ‘ 𝑋 ) ) ) = ( 1r ‘ 𝑆 ) ) |
36 |
22 24 14 35
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝑋 ) × ( 𝐼 ‘ ( 𝐺 ‘ 𝑋 ) ) ) = ( 1r ‘ 𝑆 ) ) |
37 |
36
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐺 ‘ 𝑋 ) × ( 𝐼 ‘ ( 𝐺 ‘ 𝑋 ) ) ) × ( 𝐸 ‘ 𝑋 ) ) = ( ( 1r ‘ 𝑆 ) × ( 𝐸 ‘ 𝑋 ) ) ) |
38 |
2
|
lmodring |
⊢ ( 𝑈 ∈ LMod → 𝑆 ∈ Ring ) |
39 |
19 38
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
40 |
20 3
|
ringass |
⊢ ( ( 𝑆 ∈ Ring ∧ ( ( 𝐺 ‘ 𝑋 ) ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐼 ‘ ( 𝐺 ‘ 𝑋 ) ) ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( Base ‘ 𝑆 ) ) ) → ( ( ( 𝐺 ‘ 𝑋 ) × ( 𝐼 ‘ ( 𝐺 ‘ 𝑋 ) ) ) × ( 𝐸 ‘ 𝑋 ) ) = ( ( 𝐺 ‘ 𝑋 ) × ( ( 𝐼 ‘ ( 𝐺 ‘ 𝑋 ) ) × ( 𝐸 ‘ 𝑋 ) ) ) ) |
41 |
39 24 26 28 40
|
syl13anc |
⊢ ( 𝜑 → ( ( ( 𝐺 ‘ 𝑋 ) × ( 𝐼 ‘ ( 𝐺 ‘ 𝑋 ) ) ) × ( 𝐸 ‘ 𝑋 ) ) = ( ( 𝐺 ‘ 𝑋 ) × ( ( 𝐼 ‘ ( 𝐺 ‘ 𝑋 ) ) × ( 𝐸 ‘ 𝑋 ) ) ) ) |
42 |
20 3 34
|
ringlidm |
⊢ ( ( 𝑆 ∈ Ring ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( Base ‘ 𝑆 ) ) → ( ( 1r ‘ 𝑆 ) × ( 𝐸 ‘ 𝑋 ) ) = ( 𝐸 ‘ 𝑋 ) ) |
43 |
39 28 42
|
syl2anc |
⊢ ( 𝜑 → ( ( 1r ‘ 𝑆 ) × ( 𝐸 ‘ 𝑋 ) ) = ( 𝐸 ‘ 𝑋 ) ) |
44 |
37 41 43
|
3eqtr3d |
⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝑋 ) × ( ( 𝐼 ‘ ( 𝐺 ‘ 𝑋 ) ) × ( 𝐸 ‘ 𝑋 ) ) ) = ( 𝐸 ‘ 𝑋 ) ) |
45 |
33 44
|
eqtrd |
⊢ ( 𝜑 → ( ( ( ( 𝐼 ‘ ( 𝐺 ‘ 𝑋 ) ) × ( 𝐸 ‘ 𝑋 ) ) · 𝐺 ) ‘ 𝑋 ) = ( 𝐸 ‘ 𝑋 ) ) |
46 |
45
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐸 ‘ 𝑋 ) ( -g ‘ 𝑆 ) ( ( ( ( 𝐼 ‘ ( 𝐺 ‘ 𝑋 ) ) × ( 𝐸 ‘ 𝑋 ) ) · 𝐺 ) ‘ 𝑋 ) ) = ( ( 𝐸 ‘ 𝑋 ) ( -g ‘ 𝑆 ) ( 𝐸 ‘ 𝑋 ) ) ) |
47 |
2
|
lmodfgrp |
⊢ ( 𝑈 ∈ LMod → 𝑆 ∈ Grp ) |
48 |
19 47
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ Grp ) |
49 |
20 4 17
|
grpsubid |
⊢ ( ( 𝑆 ∈ Grp ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( Base ‘ 𝑆 ) ) → ( ( 𝐸 ‘ 𝑋 ) ( -g ‘ 𝑆 ) ( 𝐸 ‘ 𝑋 ) ) = 0 ) |
50 |
48 28 49
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐸 ‘ 𝑋 ) ( -g ‘ 𝑆 ) ( 𝐸 ‘ 𝑋 ) ) = 0 ) |
51 |
32 46 50
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝐸 − ( ( ( 𝐼 ‘ ( 𝐺 ‘ 𝑋 ) ) × ( 𝐸 ‘ 𝑋 ) ) · 𝐺 ) ) ‘ 𝑋 ) = 0 ) |
52 |
16 51
|
syl5eq |
⊢ ( 𝜑 → ( 𝐻 ‘ 𝑋 ) = 0 ) |