Metamath Proof Explorer


Theorem lcfrlem1

Description: Lemma for lcfr . Note that X is z in Mario's notes. (Contributed by NM, 27-Feb-2015)

Ref Expression
Hypotheses lcfrlem1.v 𝑉 = ( Base ‘ 𝑈 )
lcfrlem1.s 𝑆 = ( Scalar ‘ 𝑈 )
lcfrlem1.q × = ( .r𝑆 )
lcfrlem1.z 0 = ( 0g𝑆 )
lcfrlem1.i 𝐼 = ( invr𝑆 )
lcfrlem1.f 𝐹 = ( LFnl ‘ 𝑈 )
lcfrlem1.d 𝐷 = ( LDual ‘ 𝑈 )
lcfrlem1.t · = ( ·𝑠𝐷 )
lcfrlem1.m = ( -g𝐷 )
lcfrlem1.u ( 𝜑𝑈 ∈ LVec )
lcfrlem1.e ( 𝜑𝐸𝐹 )
lcfrlem1.g ( 𝜑𝐺𝐹 )
lcfrlem1.x ( 𝜑𝑋𝑉 )
lcfrlem1.n ( 𝜑 → ( 𝐺𝑋 ) ≠ 0 )
lcfrlem1.h 𝐻 = ( 𝐸 ( ( ( 𝐼 ‘ ( 𝐺𝑋 ) ) × ( 𝐸𝑋 ) ) · 𝐺 ) )
Assertion lcfrlem1 ( 𝜑 → ( 𝐻𝑋 ) = 0 )

Proof

Step Hyp Ref Expression
1 lcfrlem1.v 𝑉 = ( Base ‘ 𝑈 )
2 lcfrlem1.s 𝑆 = ( Scalar ‘ 𝑈 )
3 lcfrlem1.q × = ( .r𝑆 )
4 lcfrlem1.z 0 = ( 0g𝑆 )
5 lcfrlem1.i 𝐼 = ( invr𝑆 )
6 lcfrlem1.f 𝐹 = ( LFnl ‘ 𝑈 )
7 lcfrlem1.d 𝐷 = ( LDual ‘ 𝑈 )
8 lcfrlem1.t · = ( ·𝑠𝐷 )
9 lcfrlem1.m = ( -g𝐷 )
10 lcfrlem1.u ( 𝜑𝑈 ∈ LVec )
11 lcfrlem1.e ( 𝜑𝐸𝐹 )
12 lcfrlem1.g ( 𝜑𝐺𝐹 )
13 lcfrlem1.x ( 𝜑𝑋𝑉 )
14 lcfrlem1.n ( 𝜑 → ( 𝐺𝑋 ) ≠ 0 )
15 lcfrlem1.h 𝐻 = ( 𝐸 ( ( ( 𝐼 ‘ ( 𝐺𝑋 ) ) × ( 𝐸𝑋 ) ) · 𝐺 ) )
16 15 fveq1i ( 𝐻𝑋 ) = ( ( 𝐸 ( ( ( 𝐼 ‘ ( 𝐺𝑋 ) ) × ( 𝐸𝑋 ) ) · 𝐺 ) ) ‘ 𝑋 )
17 eqid ( -g𝑆 ) = ( -g𝑆 )
18 lveclmod ( 𝑈 ∈ LVec → 𝑈 ∈ LMod )
19 10 18 syl ( 𝜑𝑈 ∈ LMod )
20 eqid ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 )
21 2 lvecdrng ( 𝑈 ∈ LVec → 𝑆 ∈ DivRing )
22 10 21 syl ( 𝜑𝑆 ∈ DivRing )
23 2 20 1 6 lflcl ( ( 𝑈 ∈ LVec ∧ 𝐺𝐹𝑋𝑉 ) → ( 𝐺𝑋 ) ∈ ( Base ‘ 𝑆 ) )
24 10 12 13 23 syl3anc ( 𝜑 → ( 𝐺𝑋 ) ∈ ( Base ‘ 𝑆 ) )
25 20 4 5 drnginvrcl ( ( 𝑆 ∈ DivRing ∧ ( 𝐺𝑋 ) ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐺𝑋 ) ≠ 0 ) → ( 𝐼 ‘ ( 𝐺𝑋 ) ) ∈ ( Base ‘ 𝑆 ) )
26 22 24 14 25 syl3anc ( 𝜑 → ( 𝐼 ‘ ( 𝐺𝑋 ) ) ∈ ( Base ‘ 𝑆 ) )
27 2 20 1 6 lflcl ( ( 𝑈 ∈ LVec ∧ 𝐸𝐹𝑋𝑉 ) → ( 𝐸𝑋 ) ∈ ( Base ‘ 𝑆 ) )
28 10 11 13 27 syl3anc ( 𝜑 → ( 𝐸𝑋 ) ∈ ( Base ‘ 𝑆 ) )
29 2 20 3 lmodmcl ( ( 𝑈 ∈ LMod ∧ ( 𝐼 ‘ ( 𝐺𝑋 ) ) ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐸𝑋 ) ∈ ( Base ‘ 𝑆 ) ) → ( ( 𝐼 ‘ ( 𝐺𝑋 ) ) × ( 𝐸𝑋 ) ) ∈ ( Base ‘ 𝑆 ) )
30 19 26 28 29 syl3anc ( 𝜑 → ( ( 𝐼 ‘ ( 𝐺𝑋 ) ) × ( 𝐸𝑋 ) ) ∈ ( Base ‘ 𝑆 ) )
31 6 2 20 7 8 19 30 12 ldualvscl ( 𝜑 → ( ( ( 𝐼 ‘ ( 𝐺𝑋 ) ) × ( 𝐸𝑋 ) ) · 𝐺 ) ∈ 𝐹 )
32 1 2 17 6 7 9 19 11 31 13 ldualvsubval ( 𝜑 → ( ( 𝐸 ( ( ( 𝐼 ‘ ( 𝐺𝑋 ) ) × ( 𝐸𝑋 ) ) · 𝐺 ) ) ‘ 𝑋 ) = ( ( 𝐸𝑋 ) ( -g𝑆 ) ( ( ( ( 𝐼 ‘ ( 𝐺𝑋 ) ) × ( 𝐸𝑋 ) ) · 𝐺 ) ‘ 𝑋 ) ) )
33 6 1 2 20 3 7 8 10 30 12 13 ldualvsval ( 𝜑 → ( ( ( ( 𝐼 ‘ ( 𝐺𝑋 ) ) × ( 𝐸𝑋 ) ) · 𝐺 ) ‘ 𝑋 ) = ( ( 𝐺𝑋 ) × ( ( 𝐼 ‘ ( 𝐺𝑋 ) ) × ( 𝐸𝑋 ) ) ) )
34 eqid ( 1r𝑆 ) = ( 1r𝑆 )
35 20 4 3 34 5 drnginvrr ( ( 𝑆 ∈ DivRing ∧ ( 𝐺𝑋 ) ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐺𝑋 ) ≠ 0 ) → ( ( 𝐺𝑋 ) × ( 𝐼 ‘ ( 𝐺𝑋 ) ) ) = ( 1r𝑆 ) )
36 22 24 14 35 syl3anc ( 𝜑 → ( ( 𝐺𝑋 ) × ( 𝐼 ‘ ( 𝐺𝑋 ) ) ) = ( 1r𝑆 ) )
37 36 oveq1d ( 𝜑 → ( ( ( 𝐺𝑋 ) × ( 𝐼 ‘ ( 𝐺𝑋 ) ) ) × ( 𝐸𝑋 ) ) = ( ( 1r𝑆 ) × ( 𝐸𝑋 ) ) )
38 2 lmodring ( 𝑈 ∈ LMod → 𝑆 ∈ Ring )
39 19 38 syl ( 𝜑𝑆 ∈ Ring )
40 20 3 ringass ( ( 𝑆 ∈ Ring ∧ ( ( 𝐺𝑋 ) ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐼 ‘ ( 𝐺𝑋 ) ) ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐸𝑋 ) ∈ ( Base ‘ 𝑆 ) ) ) → ( ( ( 𝐺𝑋 ) × ( 𝐼 ‘ ( 𝐺𝑋 ) ) ) × ( 𝐸𝑋 ) ) = ( ( 𝐺𝑋 ) × ( ( 𝐼 ‘ ( 𝐺𝑋 ) ) × ( 𝐸𝑋 ) ) ) )
41 39 24 26 28 40 syl13anc ( 𝜑 → ( ( ( 𝐺𝑋 ) × ( 𝐼 ‘ ( 𝐺𝑋 ) ) ) × ( 𝐸𝑋 ) ) = ( ( 𝐺𝑋 ) × ( ( 𝐼 ‘ ( 𝐺𝑋 ) ) × ( 𝐸𝑋 ) ) ) )
42 20 3 34 ringlidm ( ( 𝑆 ∈ Ring ∧ ( 𝐸𝑋 ) ∈ ( Base ‘ 𝑆 ) ) → ( ( 1r𝑆 ) × ( 𝐸𝑋 ) ) = ( 𝐸𝑋 ) )
43 39 28 42 syl2anc ( 𝜑 → ( ( 1r𝑆 ) × ( 𝐸𝑋 ) ) = ( 𝐸𝑋 ) )
44 37 41 43 3eqtr3d ( 𝜑 → ( ( 𝐺𝑋 ) × ( ( 𝐼 ‘ ( 𝐺𝑋 ) ) × ( 𝐸𝑋 ) ) ) = ( 𝐸𝑋 ) )
45 33 44 eqtrd ( 𝜑 → ( ( ( ( 𝐼 ‘ ( 𝐺𝑋 ) ) × ( 𝐸𝑋 ) ) · 𝐺 ) ‘ 𝑋 ) = ( 𝐸𝑋 ) )
46 45 oveq2d ( 𝜑 → ( ( 𝐸𝑋 ) ( -g𝑆 ) ( ( ( ( 𝐼 ‘ ( 𝐺𝑋 ) ) × ( 𝐸𝑋 ) ) · 𝐺 ) ‘ 𝑋 ) ) = ( ( 𝐸𝑋 ) ( -g𝑆 ) ( 𝐸𝑋 ) ) )
47 2 lmodfgrp ( 𝑈 ∈ LMod → 𝑆 ∈ Grp )
48 19 47 syl ( 𝜑𝑆 ∈ Grp )
49 20 4 17 grpsubid ( ( 𝑆 ∈ Grp ∧ ( 𝐸𝑋 ) ∈ ( Base ‘ 𝑆 ) ) → ( ( 𝐸𝑋 ) ( -g𝑆 ) ( 𝐸𝑋 ) ) = 0 )
50 48 28 49 syl2anc ( 𝜑 → ( ( 𝐸𝑋 ) ( -g𝑆 ) ( 𝐸𝑋 ) ) = 0 )
51 32 46 50 3eqtrd ( 𝜑 → ( ( 𝐸 ( ( ( 𝐼 ‘ ( 𝐺𝑋 ) ) × ( 𝐸𝑋 ) ) · 𝐺 ) ) ‘ 𝑋 ) = 0 )
52 16 51 syl5eq ( 𝜑 → ( 𝐻𝑋 ) = 0 )