Step |
Hyp |
Ref |
Expression |
1 |
|
lcfrlem1.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
2 |
|
lcfrlem1.s |
⊢ 𝑆 = ( Scalar ‘ 𝑈 ) |
3 |
|
lcfrlem1.q |
⊢ × = ( .r ‘ 𝑆 ) |
4 |
|
lcfrlem1.z |
⊢ 0 = ( 0g ‘ 𝑆 ) |
5 |
|
lcfrlem1.i |
⊢ 𝐼 = ( invr ‘ 𝑆 ) |
6 |
|
lcfrlem1.f |
⊢ 𝐹 = ( LFnl ‘ 𝑈 ) |
7 |
|
lcfrlem1.d |
⊢ 𝐷 = ( LDual ‘ 𝑈 ) |
8 |
|
lcfrlem1.t |
⊢ · = ( ·𝑠 ‘ 𝐷 ) |
9 |
|
lcfrlem1.m |
⊢ − = ( -g ‘ 𝐷 ) |
10 |
|
lcfrlem1.u |
⊢ ( 𝜑 → 𝑈 ∈ LVec ) |
11 |
|
lcfrlem1.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝐹 ) |
12 |
|
lcfrlem1.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
13 |
|
lcfrlem1.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
14 |
|
lcfrlem1.n |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑋 ) ≠ 0 ) |
15 |
|
lcfrlem1.h |
⊢ 𝐻 = ( 𝐸 − ( ( ( 𝐼 ‘ ( 𝐺 ‘ 𝑋 ) ) × ( 𝐸 ‘ 𝑋 ) ) · 𝐺 ) ) |
16 |
|
lcfrlem2.l |
⊢ 𝐿 = ( LKer ‘ 𝑈 ) |
17 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
18 |
|
lveclmod |
⊢ ( 𝑈 ∈ LVec → 𝑈 ∈ LMod ) |
19 |
10 18
|
syl |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
20 |
2
|
lmodring |
⊢ ( 𝑈 ∈ LMod → 𝑆 ∈ Ring ) |
21 |
19 20
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
22 |
2
|
lvecdrng |
⊢ ( 𝑈 ∈ LVec → 𝑆 ∈ DivRing ) |
23 |
10 22
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ DivRing ) |
24 |
2 17 1 6
|
lflcl |
⊢ ( ( 𝑈 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝑋 ∈ 𝑉 ) → ( 𝐺 ‘ 𝑋 ) ∈ ( Base ‘ 𝑆 ) ) |
25 |
10 12 13 24
|
syl3anc |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑋 ) ∈ ( Base ‘ 𝑆 ) ) |
26 |
17 4 5
|
drnginvrcl |
⊢ ( ( 𝑆 ∈ DivRing ∧ ( 𝐺 ‘ 𝑋 ) ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐺 ‘ 𝑋 ) ≠ 0 ) → ( 𝐼 ‘ ( 𝐺 ‘ 𝑋 ) ) ∈ ( Base ‘ 𝑆 ) ) |
27 |
23 25 14 26
|
syl3anc |
⊢ ( 𝜑 → ( 𝐼 ‘ ( 𝐺 ‘ 𝑋 ) ) ∈ ( Base ‘ 𝑆 ) ) |
28 |
2 17 1 6
|
lflcl |
⊢ ( ( 𝑈 ∈ LVec ∧ 𝐸 ∈ 𝐹 ∧ 𝑋 ∈ 𝑉 ) → ( 𝐸 ‘ 𝑋 ) ∈ ( Base ‘ 𝑆 ) ) |
29 |
10 11 13 28
|
syl3anc |
⊢ ( 𝜑 → ( 𝐸 ‘ 𝑋 ) ∈ ( Base ‘ 𝑆 ) ) |
30 |
17 3
|
ringcl |
⊢ ( ( 𝑆 ∈ Ring ∧ ( 𝐼 ‘ ( 𝐺 ‘ 𝑋 ) ) ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( Base ‘ 𝑆 ) ) → ( ( 𝐼 ‘ ( 𝐺 ‘ 𝑋 ) ) × ( 𝐸 ‘ 𝑋 ) ) ∈ ( Base ‘ 𝑆 ) ) |
31 |
21 27 29 30
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐼 ‘ ( 𝐺 ‘ 𝑋 ) ) × ( 𝐸 ‘ 𝑋 ) ) ∈ ( Base ‘ 𝑆 ) ) |
32 |
2 17 6 16 7 8 10 12 31
|
lkrss |
⊢ ( 𝜑 → ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ ( ( ( 𝐼 ‘ ( 𝐺 ‘ 𝑋 ) ) × ( 𝐸 ‘ 𝑋 ) ) · 𝐺 ) ) ) |
33 |
6 2 17 7 8 19 31 12
|
ldualvscl |
⊢ ( 𝜑 → ( ( ( 𝐼 ‘ ( 𝐺 ‘ 𝑋 ) ) × ( 𝐸 ‘ 𝑋 ) ) · 𝐺 ) ∈ 𝐹 ) |
34 |
|
ringgrp |
⊢ ( 𝑆 ∈ Ring → 𝑆 ∈ Grp ) |
35 |
21 34
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ Grp ) |
36 |
|
eqid |
⊢ ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑆 ) |
37 |
17 36
|
ringidcl |
⊢ ( 𝑆 ∈ Ring → ( 1r ‘ 𝑆 ) ∈ ( Base ‘ 𝑆 ) ) |
38 |
21 37
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑆 ) ∈ ( Base ‘ 𝑆 ) ) |
39 |
|
eqid |
⊢ ( invg ‘ 𝑆 ) = ( invg ‘ 𝑆 ) |
40 |
17 39
|
grpinvcl |
⊢ ( ( 𝑆 ∈ Grp ∧ ( 1r ‘ 𝑆 ) ∈ ( Base ‘ 𝑆 ) ) → ( ( invg ‘ 𝑆 ) ‘ ( 1r ‘ 𝑆 ) ) ∈ ( Base ‘ 𝑆 ) ) |
41 |
35 38 40
|
syl2anc |
⊢ ( 𝜑 → ( ( invg ‘ 𝑆 ) ‘ ( 1r ‘ 𝑆 ) ) ∈ ( Base ‘ 𝑆 ) ) |
42 |
2 17 6 16 7 8 10 33 41
|
lkrss |
⊢ ( 𝜑 → ( 𝐿 ‘ ( ( ( 𝐼 ‘ ( 𝐺 ‘ 𝑋 ) ) × ( 𝐸 ‘ 𝑋 ) ) · 𝐺 ) ) ⊆ ( 𝐿 ‘ ( ( ( invg ‘ 𝑆 ) ‘ ( 1r ‘ 𝑆 ) ) · ( ( ( 𝐼 ‘ ( 𝐺 ‘ 𝑋 ) ) × ( 𝐸 ‘ 𝑋 ) ) · 𝐺 ) ) ) ) |
43 |
32 42
|
sstrd |
⊢ ( 𝜑 → ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ ( ( ( invg ‘ 𝑆 ) ‘ ( 1r ‘ 𝑆 ) ) · ( ( ( 𝐼 ‘ ( 𝐺 ‘ 𝑋 ) ) × ( 𝐸 ‘ 𝑋 ) ) · 𝐺 ) ) ) ) |
44 |
|
sslin |
⊢ ( ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ ( ( ( invg ‘ 𝑆 ) ‘ ( 1r ‘ 𝑆 ) ) · ( ( ( 𝐼 ‘ ( 𝐺 ‘ 𝑋 ) ) × ( 𝐸 ‘ 𝑋 ) ) · 𝐺 ) ) ) → ( ( 𝐿 ‘ 𝐸 ) ∩ ( 𝐿 ‘ 𝐺 ) ) ⊆ ( ( 𝐿 ‘ 𝐸 ) ∩ ( 𝐿 ‘ ( ( ( invg ‘ 𝑆 ) ‘ ( 1r ‘ 𝑆 ) ) · ( ( ( 𝐼 ‘ ( 𝐺 ‘ 𝑋 ) ) × ( 𝐸 ‘ 𝑋 ) ) · 𝐺 ) ) ) ) ) |
45 |
43 44
|
syl |
⊢ ( 𝜑 → ( ( 𝐿 ‘ 𝐸 ) ∩ ( 𝐿 ‘ 𝐺 ) ) ⊆ ( ( 𝐿 ‘ 𝐸 ) ∩ ( 𝐿 ‘ ( ( ( invg ‘ 𝑆 ) ‘ ( 1r ‘ 𝑆 ) ) · ( ( ( 𝐼 ‘ ( 𝐺 ‘ 𝑋 ) ) × ( 𝐸 ‘ 𝑋 ) ) · 𝐺 ) ) ) ) ) |
46 |
|
eqid |
⊢ ( +g ‘ 𝐷 ) = ( +g ‘ 𝐷 ) |
47 |
6 2 17 7 8 19 41 33
|
ldualvscl |
⊢ ( 𝜑 → ( ( ( invg ‘ 𝑆 ) ‘ ( 1r ‘ 𝑆 ) ) · ( ( ( 𝐼 ‘ ( 𝐺 ‘ 𝑋 ) ) × ( 𝐸 ‘ 𝑋 ) ) · 𝐺 ) ) ∈ 𝐹 ) |
48 |
6 16 7 46 19 11 47
|
lkrin |
⊢ ( 𝜑 → ( ( 𝐿 ‘ 𝐸 ) ∩ ( 𝐿 ‘ ( ( ( invg ‘ 𝑆 ) ‘ ( 1r ‘ 𝑆 ) ) · ( ( ( 𝐼 ‘ ( 𝐺 ‘ 𝑋 ) ) × ( 𝐸 ‘ 𝑋 ) ) · 𝐺 ) ) ) ) ⊆ ( 𝐿 ‘ ( 𝐸 ( +g ‘ 𝐷 ) ( ( ( invg ‘ 𝑆 ) ‘ ( 1r ‘ 𝑆 ) ) · ( ( ( 𝐼 ‘ ( 𝐺 ‘ 𝑋 ) ) × ( 𝐸 ‘ 𝑋 ) ) · 𝐺 ) ) ) ) ) |
49 |
45 48
|
sstrd |
⊢ ( 𝜑 → ( ( 𝐿 ‘ 𝐸 ) ∩ ( 𝐿 ‘ 𝐺 ) ) ⊆ ( 𝐿 ‘ ( 𝐸 ( +g ‘ 𝐷 ) ( ( ( invg ‘ 𝑆 ) ‘ ( 1r ‘ 𝑆 ) ) · ( ( ( 𝐼 ‘ ( 𝐺 ‘ 𝑋 ) ) × ( 𝐸 ‘ 𝑋 ) ) · 𝐺 ) ) ) ) ) |
50 |
15
|
fveq2i |
⊢ ( 𝐿 ‘ 𝐻 ) = ( 𝐿 ‘ ( 𝐸 − ( ( ( 𝐼 ‘ ( 𝐺 ‘ 𝑋 ) ) × ( 𝐸 ‘ 𝑋 ) ) · 𝐺 ) ) ) |
51 |
2 39 36 6 7 46 8 9 19 11 33
|
ldualvsub |
⊢ ( 𝜑 → ( 𝐸 − ( ( ( 𝐼 ‘ ( 𝐺 ‘ 𝑋 ) ) × ( 𝐸 ‘ 𝑋 ) ) · 𝐺 ) ) = ( 𝐸 ( +g ‘ 𝐷 ) ( ( ( invg ‘ 𝑆 ) ‘ ( 1r ‘ 𝑆 ) ) · ( ( ( 𝐼 ‘ ( 𝐺 ‘ 𝑋 ) ) × ( 𝐸 ‘ 𝑋 ) ) · 𝐺 ) ) ) ) |
52 |
51
|
fveq2d |
⊢ ( 𝜑 → ( 𝐿 ‘ ( 𝐸 − ( ( ( 𝐼 ‘ ( 𝐺 ‘ 𝑋 ) ) × ( 𝐸 ‘ 𝑋 ) ) · 𝐺 ) ) ) = ( 𝐿 ‘ ( 𝐸 ( +g ‘ 𝐷 ) ( ( ( invg ‘ 𝑆 ) ‘ ( 1r ‘ 𝑆 ) ) · ( ( ( 𝐼 ‘ ( 𝐺 ‘ 𝑋 ) ) × ( 𝐸 ‘ 𝑋 ) ) · 𝐺 ) ) ) ) ) |
53 |
50 52
|
eqtr2id |
⊢ ( 𝜑 → ( 𝐿 ‘ ( 𝐸 ( +g ‘ 𝐷 ) ( ( ( invg ‘ 𝑆 ) ‘ ( 1r ‘ 𝑆 ) ) · ( ( ( 𝐼 ‘ ( 𝐺 ‘ 𝑋 ) ) × ( 𝐸 ‘ 𝑋 ) ) · 𝐺 ) ) ) ) = ( 𝐿 ‘ 𝐻 ) ) |
54 |
49 53
|
sseqtrd |
⊢ ( 𝜑 → ( ( 𝐿 ‘ 𝐸 ) ∩ ( 𝐿 ‘ 𝐺 ) ) ⊆ ( 𝐿 ‘ 𝐻 ) ) |