Metamath Proof Explorer


Theorem lcfrlem3

Description: Lemma for lcfr . (Contributed by NM, 27-Feb-2015)

Ref Expression
Hypotheses lcfrlem1.v 𝑉 = ( Base ‘ 𝑈 )
lcfrlem1.s 𝑆 = ( Scalar ‘ 𝑈 )
lcfrlem1.q × = ( .r𝑆 )
lcfrlem1.z 0 = ( 0g𝑆 )
lcfrlem1.i 𝐼 = ( invr𝑆 )
lcfrlem1.f 𝐹 = ( LFnl ‘ 𝑈 )
lcfrlem1.d 𝐷 = ( LDual ‘ 𝑈 )
lcfrlem1.t · = ( ·𝑠𝐷 )
lcfrlem1.m = ( -g𝐷 )
lcfrlem1.u ( 𝜑𝑈 ∈ LVec )
lcfrlem1.e ( 𝜑𝐸𝐹 )
lcfrlem1.g ( 𝜑𝐺𝐹 )
lcfrlem1.x ( 𝜑𝑋𝑉 )
lcfrlem1.n ( 𝜑 → ( 𝐺𝑋 ) ≠ 0 )
lcfrlem1.h 𝐻 = ( 𝐸 ( ( ( 𝐼 ‘ ( 𝐺𝑋 ) ) × ( 𝐸𝑋 ) ) · 𝐺 ) )
lcfrlem2.l 𝐿 = ( LKer ‘ 𝑈 )
Assertion lcfrlem3 ( 𝜑𝑋 ∈ ( 𝐿𝐻 ) )

Proof

Step Hyp Ref Expression
1 lcfrlem1.v 𝑉 = ( Base ‘ 𝑈 )
2 lcfrlem1.s 𝑆 = ( Scalar ‘ 𝑈 )
3 lcfrlem1.q × = ( .r𝑆 )
4 lcfrlem1.z 0 = ( 0g𝑆 )
5 lcfrlem1.i 𝐼 = ( invr𝑆 )
6 lcfrlem1.f 𝐹 = ( LFnl ‘ 𝑈 )
7 lcfrlem1.d 𝐷 = ( LDual ‘ 𝑈 )
8 lcfrlem1.t · = ( ·𝑠𝐷 )
9 lcfrlem1.m = ( -g𝐷 )
10 lcfrlem1.u ( 𝜑𝑈 ∈ LVec )
11 lcfrlem1.e ( 𝜑𝐸𝐹 )
12 lcfrlem1.g ( 𝜑𝐺𝐹 )
13 lcfrlem1.x ( 𝜑𝑋𝑉 )
14 lcfrlem1.n ( 𝜑 → ( 𝐺𝑋 ) ≠ 0 )
15 lcfrlem1.h 𝐻 = ( 𝐸 ( ( ( 𝐼 ‘ ( 𝐺𝑋 ) ) × ( 𝐸𝑋 ) ) · 𝐺 ) )
16 lcfrlem2.l 𝐿 = ( LKer ‘ 𝑈 )
17 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 lcfrlem1 ( 𝜑 → ( 𝐻𝑋 ) = 0 )
18 lveclmod ( 𝑈 ∈ LVec → 𝑈 ∈ LMod )
19 10 18 syl ( 𝜑𝑈 ∈ LMod )
20 eqid ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 )
21 2 lmodring ( 𝑈 ∈ LMod → 𝑆 ∈ Ring )
22 19 21 syl ( 𝜑𝑆 ∈ Ring )
23 2 lvecdrng ( 𝑈 ∈ LVec → 𝑆 ∈ DivRing )
24 10 23 syl ( 𝜑𝑆 ∈ DivRing )
25 2 20 1 6 lflcl ( ( 𝑈 ∈ LVec ∧ 𝐺𝐹𝑋𝑉 ) → ( 𝐺𝑋 ) ∈ ( Base ‘ 𝑆 ) )
26 10 12 13 25 syl3anc ( 𝜑 → ( 𝐺𝑋 ) ∈ ( Base ‘ 𝑆 ) )
27 20 4 5 drnginvrcl ( ( 𝑆 ∈ DivRing ∧ ( 𝐺𝑋 ) ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐺𝑋 ) ≠ 0 ) → ( 𝐼 ‘ ( 𝐺𝑋 ) ) ∈ ( Base ‘ 𝑆 ) )
28 24 26 14 27 syl3anc ( 𝜑 → ( 𝐼 ‘ ( 𝐺𝑋 ) ) ∈ ( Base ‘ 𝑆 ) )
29 2 20 1 6 lflcl ( ( 𝑈 ∈ LVec ∧ 𝐸𝐹𝑋𝑉 ) → ( 𝐸𝑋 ) ∈ ( Base ‘ 𝑆 ) )
30 10 11 13 29 syl3anc ( 𝜑 → ( 𝐸𝑋 ) ∈ ( Base ‘ 𝑆 ) )
31 20 3 ringcl ( ( 𝑆 ∈ Ring ∧ ( 𝐼 ‘ ( 𝐺𝑋 ) ) ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐸𝑋 ) ∈ ( Base ‘ 𝑆 ) ) → ( ( 𝐼 ‘ ( 𝐺𝑋 ) ) × ( 𝐸𝑋 ) ) ∈ ( Base ‘ 𝑆 ) )
32 22 28 30 31 syl3anc ( 𝜑 → ( ( 𝐼 ‘ ( 𝐺𝑋 ) ) × ( 𝐸𝑋 ) ) ∈ ( Base ‘ 𝑆 ) )
33 6 2 20 7 8 19 32 12 ldualvscl ( 𝜑 → ( ( ( 𝐼 ‘ ( 𝐺𝑋 ) ) × ( 𝐸𝑋 ) ) · 𝐺 ) ∈ 𝐹 )
34 6 7 9 19 11 33 ldualvsubcl ( 𝜑 → ( 𝐸 ( ( ( 𝐼 ‘ ( 𝐺𝑋 ) ) × ( 𝐸𝑋 ) ) · 𝐺 ) ) ∈ 𝐹 )
35 15 34 eqeltrid ( 𝜑𝐻𝐹 )
36 1 2 4 6 16 10 35 13 ellkr2 ( 𝜑 → ( 𝑋 ∈ ( 𝐿𝐻 ) ↔ ( 𝐻𝑋 ) = 0 ) )
37 17 36 mpbird ( 𝜑𝑋 ∈ ( 𝐿𝐻 ) )