Step |
Hyp |
Ref |
Expression |
1 |
|
lcfrlem1.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
2 |
|
lcfrlem1.s |
⊢ 𝑆 = ( Scalar ‘ 𝑈 ) |
3 |
|
lcfrlem1.q |
⊢ × = ( .r ‘ 𝑆 ) |
4 |
|
lcfrlem1.z |
⊢ 0 = ( 0g ‘ 𝑆 ) |
5 |
|
lcfrlem1.i |
⊢ 𝐼 = ( invr ‘ 𝑆 ) |
6 |
|
lcfrlem1.f |
⊢ 𝐹 = ( LFnl ‘ 𝑈 ) |
7 |
|
lcfrlem1.d |
⊢ 𝐷 = ( LDual ‘ 𝑈 ) |
8 |
|
lcfrlem1.t |
⊢ · = ( ·𝑠 ‘ 𝐷 ) |
9 |
|
lcfrlem1.m |
⊢ − = ( -g ‘ 𝐷 ) |
10 |
|
lcfrlem1.u |
⊢ ( 𝜑 → 𝑈 ∈ LVec ) |
11 |
|
lcfrlem1.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝐹 ) |
12 |
|
lcfrlem1.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
13 |
|
lcfrlem1.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
14 |
|
lcfrlem1.n |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑋 ) ≠ 0 ) |
15 |
|
lcfrlem1.h |
⊢ 𝐻 = ( 𝐸 − ( ( ( 𝐼 ‘ ( 𝐺 ‘ 𝑋 ) ) × ( 𝐸 ‘ 𝑋 ) ) · 𝐺 ) ) |
16 |
|
lcfrlem2.l |
⊢ 𝐿 = ( LKer ‘ 𝑈 ) |
17 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
lcfrlem1 |
⊢ ( 𝜑 → ( 𝐻 ‘ 𝑋 ) = 0 ) |
18 |
|
lveclmod |
⊢ ( 𝑈 ∈ LVec → 𝑈 ∈ LMod ) |
19 |
10 18
|
syl |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
20 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
21 |
2
|
lmodring |
⊢ ( 𝑈 ∈ LMod → 𝑆 ∈ Ring ) |
22 |
19 21
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
23 |
2
|
lvecdrng |
⊢ ( 𝑈 ∈ LVec → 𝑆 ∈ DivRing ) |
24 |
10 23
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ DivRing ) |
25 |
2 20 1 6
|
lflcl |
⊢ ( ( 𝑈 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝑋 ∈ 𝑉 ) → ( 𝐺 ‘ 𝑋 ) ∈ ( Base ‘ 𝑆 ) ) |
26 |
10 12 13 25
|
syl3anc |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑋 ) ∈ ( Base ‘ 𝑆 ) ) |
27 |
20 4 5
|
drnginvrcl |
⊢ ( ( 𝑆 ∈ DivRing ∧ ( 𝐺 ‘ 𝑋 ) ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐺 ‘ 𝑋 ) ≠ 0 ) → ( 𝐼 ‘ ( 𝐺 ‘ 𝑋 ) ) ∈ ( Base ‘ 𝑆 ) ) |
28 |
24 26 14 27
|
syl3anc |
⊢ ( 𝜑 → ( 𝐼 ‘ ( 𝐺 ‘ 𝑋 ) ) ∈ ( Base ‘ 𝑆 ) ) |
29 |
2 20 1 6
|
lflcl |
⊢ ( ( 𝑈 ∈ LVec ∧ 𝐸 ∈ 𝐹 ∧ 𝑋 ∈ 𝑉 ) → ( 𝐸 ‘ 𝑋 ) ∈ ( Base ‘ 𝑆 ) ) |
30 |
10 11 13 29
|
syl3anc |
⊢ ( 𝜑 → ( 𝐸 ‘ 𝑋 ) ∈ ( Base ‘ 𝑆 ) ) |
31 |
20 3
|
ringcl |
⊢ ( ( 𝑆 ∈ Ring ∧ ( 𝐼 ‘ ( 𝐺 ‘ 𝑋 ) ) ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( Base ‘ 𝑆 ) ) → ( ( 𝐼 ‘ ( 𝐺 ‘ 𝑋 ) ) × ( 𝐸 ‘ 𝑋 ) ) ∈ ( Base ‘ 𝑆 ) ) |
32 |
22 28 30 31
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐼 ‘ ( 𝐺 ‘ 𝑋 ) ) × ( 𝐸 ‘ 𝑋 ) ) ∈ ( Base ‘ 𝑆 ) ) |
33 |
6 2 20 7 8 19 32 12
|
ldualvscl |
⊢ ( 𝜑 → ( ( ( 𝐼 ‘ ( 𝐺 ‘ 𝑋 ) ) × ( 𝐸 ‘ 𝑋 ) ) · 𝐺 ) ∈ 𝐹 ) |
34 |
6 7 9 19 11 33
|
ldualvsubcl |
⊢ ( 𝜑 → ( 𝐸 − ( ( ( 𝐼 ‘ ( 𝐺 ‘ 𝑋 ) ) × ( 𝐸 ‘ 𝑋 ) ) · 𝐺 ) ) ∈ 𝐹 ) |
35 |
15 34
|
eqeltrid |
⊢ ( 𝜑 → 𝐻 ∈ 𝐹 ) |
36 |
1 2 4 6 16 10 35 13
|
ellkr2 |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝐿 ‘ 𝐻 ) ↔ ( 𝐻 ‘ 𝑋 ) = 0 ) ) |
37 |
17 36
|
mpbird |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐿 ‘ 𝐻 ) ) |