Metamath Proof Explorer


Theorem lcfrlem3

Description: Lemma for lcfr . (Contributed by NM, 27-Feb-2015)

Ref Expression
Hypotheses lcfrlem1.v V=BaseU
lcfrlem1.s S=ScalarU
lcfrlem1.q ×˙=S
lcfrlem1.z 0˙=0S
lcfrlem1.i I=invrS
lcfrlem1.f F=LFnlU
lcfrlem1.d D=LDualU
lcfrlem1.t ·˙=D
lcfrlem1.m -˙=-D
lcfrlem1.u φULVec
lcfrlem1.e φEF
lcfrlem1.g φGF
lcfrlem1.x φXV
lcfrlem1.n φGX0˙
lcfrlem1.h H=E-˙IGX×˙EX·˙G
lcfrlem2.l L=LKerU
Assertion lcfrlem3 φXLH

Proof

Step Hyp Ref Expression
1 lcfrlem1.v V=BaseU
2 lcfrlem1.s S=ScalarU
3 lcfrlem1.q ×˙=S
4 lcfrlem1.z 0˙=0S
5 lcfrlem1.i I=invrS
6 lcfrlem1.f F=LFnlU
7 lcfrlem1.d D=LDualU
8 lcfrlem1.t ·˙=D
9 lcfrlem1.m -˙=-D
10 lcfrlem1.u φULVec
11 lcfrlem1.e φEF
12 lcfrlem1.g φGF
13 lcfrlem1.x φXV
14 lcfrlem1.n φGX0˙
15 lcfrlem1.h H=E-˙IGX×˙EX·˙G
16 lcfrlem2.l L=LKerU
17 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 lcfrlem1 φHX=0˙
18 lveclmod ULVecULMod
19 10 18 syl φULMod
20 eqid BaseS=BaseS
21 2 lmodring ULModSRing
22 19 21 syl φSRing
23 2 lvecdrng ULVecSDivRing
24 10 23 syl φSDivRing
25 2 20 1 6 lflcl ULVecGFXVGXBaseS
26 10 12 13 25 syl3anc φGXBaseS
27 20 4 5 drnginvrcl SDivRingGXBaseSGX0˙IGXBaseS
28 24 26 14 27 syl3anc φIGXBaseS
29 2 20 1 6 lflcl ULVecEFXVEXBaseS
30 10 11 13 29 syl3anc φEXBaseS
31 20 3 ringcl SRingIGXBaseSEXBaseSIGX×˙EXBaseS
32 22 28 30 31 syl3anc φIGX×˙EXBaseS
33 6 2 20 7 8 19 32 12 ldualvscl φIGX×˙EX·˙GF
34 6 7 9 19 11 33 ldualvsubcl φE-˙IGX×˙EX·˙GF
35 15 34 eqeltrid φHF
36 1 2 4 6 16 10 35 13 ellkr2 φXLHHX=0˙
37 17 36 mpbird φXLH