Metamath Proof Explorer


Theorem lcfrlem35

Description: Lemma for lcfr . (Contributed by NM, 2-Mar-2015)

Ref Expression
Hypotheses lcfrlem17.h 𝐻 = ( LHyp ‘ 𝐾 )
lcfrlem17.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
lcfrlem17.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
lcfrlem17.v 𝑉 = ( Base ‘ 𝑈 )
lcfrlem17.p + = ( +g𝑈 )
lcfrlem17.z 0 = ( 0g𝑈 )
lcfrlem17.n 𝑁 = ( LSpan ‘ 𝑈 )
lcfrlem17.a 𝐴 = ( LSAtoms ‘ 𝑈 )
lcfrlem17.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
lcfrlem17.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
lcfrlem17.y ( 𝜑𝑌 ∈ ( 𝑉 ∖ { 0 } ) )
lcfrlem17.ne ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) )
lcfrlem22.b 𝐵 = ( ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∩ ( ‘ { ( 𝑋 + 𝑌 ) } ) )
lcfrlem24.t · = ( ·𝑠𝑈 )
lcfrlem24.s 𝑆 = ( Scalar ‘ 𝑈 )
lcfrlem24.q 𝑄 = ( 0g𝑆 )
lcfrlem24.r 𝑅 = ( Base ‘ 𝑆 )
lcfrlem24.j 𝐽 = ( 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ↦ ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑥 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑥 ) ) ) ) )
lcfrlem24.ib ( 𝜑𝐼𝐵 )
lcfrlem24.l 𝐿 = ( LKer ‘ 𝑈 )
lcfrlem25.d 𝐷 = ( LDual ‘ 𝑈 )
lcfrlem28.jn ( 𝜑 → ( ( 𝐽𝑌 ) ‘ 𝐼 ) ≠ 𝑄 )
lcfrlem29.i 𝐹 = ( invr𝑆 )
lcfrlem30.m = ( -g𝐷 )
lcfrlem30.c 𝐶 = ( ( 𝐽𝑋 ) ( ( ( 𝐹 ‘ ( ( 𝐽𝑌 ) ‘ 𝐼 ) ) ( .r𝑆 ) ( ( 𝐽𝑋 ) ‘ 𝐼 ) ) ( ·𝑠𝐷 ) ( 𝐽𝑌 ) ) )
Assertion lcfrlem35 ( 𝜑 → ( ‘ { ( 𝑋 + 𝑌 ) } ) = ( 𝐿𝐶 ) )

Proof

Step Hyp Ref Expression
1 lcfrlem17.h 𝐻 = ( LHyp ‘ 𝐾 )
2 lcfrlem17.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
3 lcfrlem17.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
4 lcfrlem17.v 𝑉 = ( Base ‘ 𝑈 )
5 lcfrlem17.p + = ( +g𝑈 )
6 lcfrlem17.z 0 = ( 0g𝑈 )
7 lcfrlem17.n 𝑁 = ( LSpan ‘ 𝑈 )
8 lcfrlem17.a 𝐴 = ( LSAtoms ‘ 𝑈 )
9 lcfrlem17.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
10 lcfrlem17.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
11 lcfrlem17.y ( 𝜑𝑌 ∈ ( 𝑉 ∖ { 0 } ) )
12 lcfrlem17.ne ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) )
13 lcfrlem22.b 𝐵 = ( ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∩ ( ‘ { ( 𝑋 + 𝑌 ) } ) )
14 lcfrlem24.t · = ( ·𝑠𝑈 )
15 lcfrlem24.s 𝑆 = ( Scalar ‘ 𝑈 )
16 lcfrlem24.q 𝑄 = ( 0g𝑆 )
17 lcfrlem24.r 𝑅 = ( Base ‘ 𝑆 )
18 lcfrlem24.j 𝐽 = ( 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ↦ ( 𝑣𝑉 ↦ ( 𝑘𝑅𝑤 ∈ ( ‘ { 𝑥 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑥 ) ) ) ) )
19 lcfrlem24.ib ( 𝜑𝐼𝐵 )
20 lcfrlem24.l 𝐿 = ( LKer ‘ 𝑈 )
21 lcfrlem25.d 𝐷 = ( LDual ‘ 𝑈 )
22 lcfrlem28.jn ( 𝜑 → ( ( 𝐽𝑌 ) ‘ 𝐼 ) ≠ 𝑄 )
23 lcfrlem29.i 𝐹 = ( invr𝑆 )
24 lcfrlem30.m = ( -g𝐷 )
25 lcfrlem30.c 𝐶 = ( ( 𝐽𝑋 ) ( ( ( 𝐹 ‘ ( ( 𝐽𝑌 ) ‘ 𝐼 ) ) ( .r𝑆 ) ( ( 𝐽𝑋 ) ‘ 𝐼 ) ) ( ·𝑠𝐷 ) ( 𝐽𝑌 ) ) )
26 eqid ( LSSum ‘ 𝑈 ) = ( LSSum ‘ 𝑈 )
27 1 2 3 4 5 6 7 8 9 10 11 12 13 26 lcfrlem23 ( 𝜑 → ( ( ‘ { 𝑋 , 𝑌 } ) ( LSSum ‘ 𝑈 ) 𝐵 ) = ( ‘ { ( 𝑋 + 𝑌 ) } ) )
28 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 lcfrlem24 ( 𝜑 → ( ‘ { 𝑋 , 𝑌 } ) = ( ( 𝐿 ‘ ( 𝐽𝑋 ) ) ∩ ( 𝐿 ‘ ( 𝐽𝑌 ) ) ) )
29 eqid ( .r𝑆 ) = ( .r𝑆 )
30 eqid ( LFnl ‘ 𝑈 ) = ( LFnl ‘ 𝑈 )
31 eqid ( ·𝑠𝐷 ) = ( ·𝑠𝐷 )
32 1 3 9 dvhlvec ( 𝜑𝑈 ∈ LVec )
33 eqid ( 0g𝐷 ) = ( 0g𝐷 )
34 eqid { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ‘ ( ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) } = { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ‘ ( ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) }
35 1 2 3 4 5 14 15 17 6 30 20 21 33 34 18 9 10 lcfrlem10 ( 𝜑 → ( 𝐽𝑋 ) ∈ ( LFnl ‘ 𝑈 ) )
36 1 2 3 4 5 14 15 17 6 30 20 21 33 34 18 9 11 lcfrlem10 ( 𝜑 → ( 𝐽𝑌 ) ∈ ( LFnl ‘ 𝑈 ) )
37 eqid ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 )
38 1 3 9 dvhlmod ( 𝜑𝑈 ∈ LMod )
39 1 2 3 4 5 6 7 8 9 10 11 12 13 lcfrlem22 ( 𝜑𝐵𝐴 )
40 37 8 38 39 lsatlssel ( 𝜑𝐵 ∈ ( LSubSp ‘ 𝑈 ) )
41 4 37 lssel ( ( 𝐵 ∈ ( LSubSp ‘ 𝑈 ) ∧ 𝐼𝐵 ) → 𝐼𝑉 )
42 40 19 41 syl2anc ( 𝜑𝐼𝑉 )
43 4 15 29 16 23 30 21 31 24 32 35 36 42 22 25 20 lcfrlem2 ( 𝜑 → ( ( 𝐿 ‘ ( 𝐽𝑋 ) ) ∩ ( 𝐿 ‘ ( 𝐽𝑌 ) ) ) ⊆ ( 𝐿𝐶 ) )
44 28 43 eqsstrd ( 𝜑 → ( ‘ { 𝑋 , 𝑌 } ) ⊆ ( 𝐿𝐶 ) )
45 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 lcfrlem28 ( 𝜑𝐼0 )
46 6 7 8 32 39 19 45 lsatel ( 𝜑𝐵 = ( 𝑁 ‘ { 𝐼 } ) )
47 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 lcfrlem30 ( 𝜑𝐶 ∈ ( LFnl ‘ 𝑈 ) )
48 30 20 37 lkrlss ( ( 𝑈 ∈ LMod ∧ 𝐶 ∈ ( LFnl ‘ 𝑈 ) ) → ( 𝐿𝐶 ) ∈ ( LSubSp ‘ 𝑈 ) )
49 38 47 48 syl2anc ( 𝜑 → ( 𝐿𝐶 ) ∈ ( LSubSp ‘ 𝑈 ) )
50 4 15 29 16 23 30 21 31 24 32 35 36 42 22 25 20 lcfrlem3 ( 𝜑𝐼 ∈ ( 𝐿𝐶 ) )
51 37 7 38 49 50 lspsnel5a ( 𝜑 → ( 𝑁 ‘ { 𝐼 } ) ⊆ ( 𝐿𝐶 ) )
52 46 51 eqsstrd ( 𝜑𝐵 ⊆ ( 𝐿𝐶 ) )
53 37 lsssssubg ( 𝑈 ∈ LMod → ( LSubSp ‘ 𝑈 ) ⊆ ( SubGrp ‘ 𝑈 ) )
54 38 53 syl ( 𝜑 → ( LSubSp ‘ 𝑈 ) ⊆ ( SubGrp ‘ 𝑈 ) )
55 10 eldifad ( 𝜑𝑋𝑉 )
56 11 eldifad ( 𝜑𝑌𝑉 )
57 prssi ( ( 𝑋𝑉𝑌𝑉 ) → { 𝑋 , 𝑌 } ⊆ 𝑉 )
58 55 56 57 syl2anc ( 𝜑 → { 𝑋 , 𝑌 } ⊆ 𝑉 )
59 1 3 4 37 2 dochlss ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ { 𝑋 , 𝑌 } ⊆ 𝑉 ) → ( ‘ { 𝑋 , 𝑌 } ) ∈ ( LSubSp ‘ 𝑈 ) )
60 9 58 59 syl2anc ( 𝜑 → ( ‘ { 𝑋 , 𝑌 } ) ∈ ( LSubSp ‘ 𝑈 ) )
61 54 60 sseldd ( 𝜑 → ( ‘ { 𝑋 , 𝑌 } ) ∈ ( SubGrp ‘ 𝑈 ) )
62 54 40 sseldd ( 𝜑𝐵 ∈ ( SubGrp ‘ 𝑈 ) )
63 54 49 sseldd ( 𝜑 → ( 𝐿𝐶 ) ∈ ( SubGrp ‘ 𝑈 ) )
64 26 lsmlub ( ( ( ‘ { 𝑋 , 𝑌 } ) ∈ ( SubGrp ‘ 𝑈 ) ∧ 𝐵 ∈ ( SubGrp ‘ 𝑈 ) ∧ ( 𝐿𝐶 ) ∈ ( SubGrp ‘ 𝑈 ) ) → ( ( ( ‘ { 𝑋 , 𝑌 } ) ⊆ ( 𝐿𝐶 ) ∧ 𝐵 ⊆ ( 𝐿𝐶 ) ) ↔ ( ( ‘ { 𝑋 , 𝑌 } ) ( LSSum ‘ 𝑈 ) 𝐵 ) ⊆ ( 𝐿𝐶 ) ) )
65 61 62 63 64 syl3anc ( 𝜑 → ( ( ( ‘ { 𝑋 , 𝑌 } ) ⊆ ( 𝐿𝐶 ) ∧ 𝐵 ⊆ ( 𝐿𝐶 ) ) ↔ ( ( ‘ { 𝑋 , 𝑌 } ) ( LSSum ‘ 𝑈 ) 𝐵 ) ⊆ ( 𝐿𝐶 ) ) )
66 44 52 65 mpbi2and ( 𝜑 → ( ( ‘ { 𝑋 , 𝑌 } ) ( LSSum ‘ 𝑈 ) 𝐵 ) ⊆ ( 𝐿𝐶 ) )
67 27 66 eqsstrrd ( 𝜑 → ( ‘ { ( 𝑋 + 𝑌 ) } ) ⊆ ( 𝐿𝐶 ) )
68 eqid ( LSHyp ‘ 𝑈 ) = ( LSHyp ‘ 𝑈 )
69 1 2 3 4 5 6 7 8 9 10 11 12 lcfrlem17 ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ ( 𝑉 ∖ { 0 } ) )
70 1 2 3 4 6 68 9 69 dochsnshp ( 𝜑 → ( ‘ { ( 𝑋 + 𝑌 ) } ) ∈ ( LSHyp ‘ 𝑈 ) )
71 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 lcfrlem34 ( 𝜑𝐶 ≠ ( 0g𝐷 ) )
72 68 30 20 21 33 32 47 lduallkr3 ( 𝜑 → ( ( 𝐿𝐶 ) ∈ ( LSHyp ‘ 𝑈 ) ↔ 𝐶 ≠ ( 0g𝐷 ) ) )
73 71 72 mpbird ( 𝜑 → ( 𝐿𝐶 ) ∈ ( LSHyp ‘ 𝑈 ) )
74 68 32 70 73 lshpcmp ( 𝜑 → ( ( ‘ { ( 𝑋 + 𝑌 ) } ) ⊆ ( 𝐿𝐶 ) ↔ ( ‘ { ( 𝑋 + 𝑌 ) } ) = ( 𝐿𝐶 ) ) )
75 67 74 mpbid ( 𝜑 → ( ‘ { ( 𝑋 + 𝑌 ) } ) = ( 𝐿𝐶 ) )