Step |
Hyp |
Ref |
Expression |
1 |
|
lcfrlem17.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
lcfrlem17.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
lcfrlem17.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
lcfrlem17.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
5 |
|
lcfrlem17.p |
⊢ + = ( +g ‘ 𝑈 ) |
6 |
|
lcfrlem17.z |
⊢ 0 = ( 0g ‘ 𝑈 ) |
7 |
|
lcfrlem17.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
8 |
|
lcfrlem17.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑈 ) |
9 |
|
lcfrlem17.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
10 |
|
lcfrlem17.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
11 |
|
lcfrlem17.y |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) |
12 |
|
lcfrlem17.ne |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |
13 |
|
lcfrlem22.b |
⊢ 𝐵 = ( ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∩ ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) ) |
14 |
|
lcfrlem24.t |
⊢ · = ( ·𝑠 ‘ 𝑈 ) |
15 |
|
lcfrlem24.s |
⊢ 𝑆 = ( Scalar ‘ 𝑈 ) |
16 |
|
lcfrlem24.q |
⊢ 𝑄 = ( 0g ‘ 𝑆 ) |
17 |
|
lcfrlem24.r |
⊢ 𝑅 = ( Base ‘ 𝑆 ) |
18 |
|
lcfrlem24.j |
⊢ 𝐽 = ( 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ↦ ( 𝑣 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝑅 ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑥 } ) 𝑣 = ( 𝑤 + ( 𝑘 · 𝑥 ) ) ) ) ) |
19 |
|
lcfrlem24.ib |
⊢ ( 𝜑 → 𝐼 ∈ 𝐵 ) |
20 |
|
lcfrlem24.l |
⊢ 𝐿 = ( LKer ‘ 𝑈 ) |
21 |
|
lcfrlem25.d |
⊢ 𝐷 = ( LDual ‘ 𝑈 ) |
22 |
|
lcfrlem28.jn |
⊢ ( 𝜑 → ( ( 𝐽 ‘ 𝑌 ) ‘ 𝐼 ) ≠ 𝑄 ) |
23 |
|
lcfrlem29.i |
⊢ 𝐹 = ( invr ‘ 𝑆 ) |
24 |
|
lcfrlem30.m |
⊢ − = ( -g ‘ 𝐷 ) |
25 |
|
lcfrlem30.c |
⊢ 𝐶 = ( ( 𝐽 ‘ 𝑋 ) − ( ( ( 𝐹 ‘ ( ( 𝐽 ‘ 𝑌 ) ‘ 𝐼 ) ) ( .r ‘ 𝑆 ) ( ( 𝐽 ‘ 𝑋 ) ‘ 𝐼 ) ) ( ·𝑠 ‘ 𝐷 ) ( 𝐽 ‘ 𝑌 ) ) ) |
26 |
|
eqid |
⊢ ( LSSum ‘ 𝑈 ) = ( LSSum ‘ 𝑈 ) |
27 |
1 2 3 4 5 6 7 8 9 10 11 12 13 26
|
lcfrlem23 |
⊢ ( 𝜑 → ( ( ⊥ ‘ { 𝑋 , 𝑌 } ) ( LSSum ‘ 𝑈 ) 𝐵 ) = ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) ) |
28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
|
lcfrlem24 |
⊢ ( 𝜑 → ( ⊥ ‘ { 𝑋 , 𝑌 } ) = ( ( 𝐿 ‘ ( 𝐽 ‘ 𝑋 ) ) ∩ ( 𝐿 ‘ ( 𝐽 ‘ 𝑌 ) ) ) ) |
29 |
|
eqid |
⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) |
30 |
|
eqid |
⊢ ( LFnl ‘ 𝑈 ) = ( LFnl ‘ 𝑈 ) |
31 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝐷 ) = ( ·𝑠 ‘ 𝐷 ) |
32 |
1 3 9
|
dvhlvec |
⊢ ( 𝜑 → 𝑈 ∈ LVec ) |
33 |
|
eqid |
⊢ ( 0g ‘ 𝐷 ) = ( 0g ‘ 𝐷 ) |
34 |
|
eqid |
⊢ { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) } = { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) } |
35 |
1 2 3 4 5 14 15 17 6 30 20 21 33 34 18 9 10
|
lcfrlem10 |
⊢ ( 𝜑 → ( 𝐽 ‘ 𝑋 ) ∈ ( LFnl ‘ 𝑈 ) ) |
36 |
1 2 3 4 5 14 15 17 6 30 20 21 33 34 18 9 11
|
lcfrlem10 |
⊢ ( 𝜑 → ( 𝐽 ‘ 𝑌 ) ∈ ( LFnl ‘ 𝑈 ) ) |
37 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
38 |
1 3 9
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
39 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
lcfrlem22 |
⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) |
40 |
37 8 38 39
|
lsatlssel |
⊢ ( 𝜑 → 𝐵 ∈ ( LSubSp ‘ 𝑈 ) ) |
41 |
4 37
|
lssel |
⊢ ( ( 𝐵 ∈ ( LSubSp ‘ 𝑈 ) ∧ 𝐼 ∈ 𝐵 ) → 𝐼 ∈ 𝑉 ) |
42 |
40 19 41
|
syl2anc |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
43 |
4 15 29 16 23 30 21 31 24 32 35 36 42 22 25 20
|
lcfrlem2 |
⊢ ( 𝜑 → ( ( 𝐿 ‘ ( 𝐽 ‘ 𝑋 ) ) ∩ ( 𝐿 ‘ ( 𝐽 ‘ 𝑌 ) ) ) ⊆ ( 𝐿 ‘ 𝐶 ) ) |
44 |
28 43
|
eqsstrd |
⊢ ( 𝜑 → ( ⊥ ‘ { 𝑋 , 𝑌 } ) ⊆ ( 𝐿 ‘ 𝐶 ) ) |
45 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
|
lcfrlem28 |
⊢ ( 𝜑 → 𝐼 ≠ 0 ) |
46 |
6 7 8 32 39 19 45
|
lsatel |
⊢ ( 𝜑 → 𝐵 = ( 𝑁 ‘ { 𝐼 } ) ) |
47 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
|
lcfrlem30 |
⊢ ( 𝜑 → 𝐶 ∈ ( LFnl ‘ 𝑈 ) ) |
48 |
30 20 37
|
lkrlss |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝐶 ∈ ( LFnl ‘ 𝑈 ) ) → ( 𝐿 ‘ 𝐶 ) ∈ ( LSubSp ‘ 𝑈 ) ) |
49 |
38 47 48
|
syl2anc |
⊢ ( 𝜑 → ( 𝐿 ‘ 𝐶 ) ∈ ( LSubSp ‘ 𝑈 ) ) |
50 |
4 15 29 16 23 30 21 31 24 32 35 36 42 22 25 20
|
lcfrlem3 |
⊢ ( 𝜑 → 𝐼 ∈ ( 𝐿 ‘ 𝐶 ) ) |
51 |
37 7 38 49 50
|
lspsnel5a |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝐼 } ) ⊆ ( 𝐿 ‘ 𝐶 ) ) |
52 |
46 51
|
eqsstrd |
⊢ ( 𝜑 → 𝐵 ⊆ ( 𝐿 ‘ 𝐶 ) ) |
53 |
37
|
lsssssubg |
⊢ ( 𝑈 ∈ LMod → ( LSubSp ‘ 𝑈 ) ⊆ ( SubGrp ‘ 𝑈 ) ) |
54 |
38 53
|
syl |
⊢ ( 𝜑 → ( LSubSp ‘ 𝑈 ) ⊆ ( SubGrp ‘ 𝑈 ) ) |
55 |
10
|
eldifad |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
56 |
11
|
eldifad |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
57 |
|
prssi |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → { 𝑋 , 𝑌 } ⊆ 𝑉 ) |
58 |
55 56 57
|
syl2anc |
⊢ ( 𝜑 → { 𝑋 , 𝑌 } ⊆ 𝑉 ) |
59 |
1 3 4 37 2
|
dochlss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ { 𝑋 , 𝑌 } ⊆ 𝑉 ) → ( ⊥ ‘ { 𝑋 , 𝑌 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
60 |
9 58 59
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ { 𝑋 , 𝑌 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
61 |
54 60
|
sseldd |
⊢ ( 𝜑 → ( ⊥ ‘ { 𝑋 , 𝑌 } ) ∈ ( SubGrp ‘ 𝑈 ) ) |
62 |
54 40
|
sseldd |
⊢ ( 𝜑 → 𝐵 ∈ ( SubGrp ‘ 𝑈 ) ) |
63 |
54 49
|
sseldd |
⊢ ( 𝜑 → ( 𝐿 ‘ 𝐶 ) ∈ ( SubGrp ‘ 𝑈 ) ) |
64 |
26
|
lsmlub |
⊢ ( ( ( ⊥ ‘ { 𝑋 , 𝑌 } ) ∈ ( SubGrp ‘ 𝑈 ) ∧ 𝐵 ∈ ( SubGrp ‘ 𝑈 ) ∧ ( 𝐿 ‘ 𝐶 ) ∈ ( SubGrp ‘ 𝑈 ) ) → ( ( ( ⊥ ‘ { 𝑋 , 𝑌 } ) ⊆ ( 𝐿 ‘ 𝐶 ) ∧ 𝐵 ⊆ ( 𝐿 ‘ 𝐶 ) ) ↔ ( ( ⊥ ‘ { 𝑋 , 𝑌 } ) ( LSSum ‘ 𝑈 ) 𝐵 ) ⊆ ( 𝐿 ‘ 𝐶 ) ) ) |
65 |
61 62 63 64
|
syl3anc |
⊢ ( 𝜑 → ( ( ( ⊥ ‘ { 𝑋 , 𝑌 } ) ⊆ ( 𝐿 ‘ 𝐶 ) ∧ 𝐵 ⊆ ( 𝐿 ‘ 𝐶 ) ) ↔ ( ( ⊥ ‘ { 𝑋 , 𝑌 } ) ( LSSum ‘ 𝑈 ) 𝐵 ) ⊆ ( 𝐿 ‘ 𝐶 ) ) ) |
66 |
44 52 65
|
mpbi2and |
⊢ ( 𝜑 → ( ( ⊥ ‘ { 𝑋 , 𝑌 } ) ( LSSum ‘ 𝑈 ) 𝐵 ) ⊆ ( 𝐿 ‘ 𝐶 ) ) |
67 |
27 66
|
eqsstrrd |
⊢ ( 𝜑 → ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) ⊆ ( 𝐿 ‘ 𝐶 ) ) |
68 |
|
eqid |
⊢ ( LSHyp ‘ 𝑈 ) = ( LSHyp ‘ 𝑈 ) |
69 |
1 2 3 4 5 6 7 8 9 10 11 12
|
lcfrlem17 |
⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ ( 𝑉 ∖ { 0 } ) ) |
70 |
1 2 3 4 6 68 9 69
|
dochsnshp |
⊢ ( 𝜑 → ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) ∈ ( LSHyp ‘ 𝑈 ) ) |
71 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
|
lcfrlem34 |
⊢ ( 𝜑 → 𝐶 ≠ ( 0g ‘ 𝐷 ) ) |
72 |
68 30 20 21 33 32 47
|
lduallkr3 |
⊢ ( 𝜑 → ( ( 𝐿 ‘ 𝐶 ) ∈ ( LSHyp ‘ 𝑈 ) ↔ 𝐶 ≠ ( 0g ‘ 𝐷 ) ) ) |
73 |
71 72
|
mpbird |
⊢ ( 𝜑 → ( 𝐿 ‘ 𝐶 ) ∈ ( LSHyp ‘ 𝑈 ) ) |
74 |
68 32 70 73
|
lshpcmp |
⊢ ( 𝜑 → ( ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) ⊆ ( 𝐿 ‘ 𝐶 ) ↔ ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) = ( 𝐿 ‘ 𝐶 ) ) ) |
75 |
67 74
|
mpbid |
⊢ ( 𝜑 → ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) = ( 𝐿 ‘ 𝐶 ) ) |