Step |
Hyp |
Ref |
Expression |
1 |
|
lcfrlem38.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
lcfrlem38.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
lcfrlem38.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
lcfrlem38.p |
⊢ + = ( +g ‘ 𝑈 ) |
5 |
|
lcfrlem38.f |
⊢ 𝐹 = ( LFnl ‘ 𝑈 ) |
6 |
|
lcfrlem38.l |
⊢ 𝐿 = ( LKer ‘ 𝑈 ) |
7 |
|
lcfrlem38.d |
⊢ 𝐷 = ( LDual ‘ 𝑈 ) |
8 |
|
lcfrlem38.q |
⊢ 𝑄 = ( LSubSp ‘ 𝐷 ) |
9 |
|
lcfrlem38.c |
⊢ 𝐶 = { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) } |
10 |
|
lcfrlem38.e |
⊢ 𝐸 = ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘ ( 𝐿 ‘ 𝑔 ) ) |
11 |
|
lcfrlem38.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
12 |
|
lcfrlem38.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝑄 ) |
13 |
|
lcfrlem38.gs |
⊢ ( 𝜑 → 𝐺 ⊆ 𝐶 ) |
14 |
|
lcfrlem38.xe |
⊢ ( 𝜑 → 𝑋 ∈ 𝐸 ) |
15 |
|
lcfrlem38.ye |
⊢ ( 𝜑 → 𝑌 ∈ 𝐸 ) |
16 |
|
lcfrlem38.z |
⊢ 0 = ( 0g ‘ 𝑈 ) |
17 |
|
lcfrlem38.x |
⊢ ( 𝜑 → 𝑋 ≠ 0 ) |
18 |
|
lcfrlem38.y |
⊢ ( 𝜑 → 𝑌 ≠ 0 ) |
19 |
|
lcfrlem38.sp |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
20 |
|
lcfrlem38.ne |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |
21 |
|
lcfrlem38.b |
⊢ 𝐵 = ( ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∩ ( ⊥ ‘ { ( 𝑋 + 𝑌 ) } ) ) |
22 |
|
lcfrlem38.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝐵 ) |
23 |
|
lcfrlem38.n |
⊢ ( 𝜑 → 𝐼 ≠ 0 ) |
24 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
25 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑈 ) = ( ·𝑠 ‘ 𝑈 ) |
26 |
|
eqid |
⊢ ( Scalar ‘ 𝑈 ) = ( Scalar ‘ 𝑈 ) |
27 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑈 ) ) = ( Base ‘ ( Scalar ‘ 𝑈 ) ) |
28 |
|
oveq1 |
⊢ ( 𝑗 = 𝑘 → ( 𝑗 ( ·𝑠 ‘ 𝑈 ) 𝑥 ) = ( 𝑘 ( ·𝑠 ‘ 𝑈 ) 𝑥 ) ) |
29 |
28
|
oveq2d |
⊢ ( 𝑗 = 𝑘 → ( 𝑤 + ( 𝑗 ( ·𝑠 ‘ 𝑈 ) 𝑥 ) ) = ( 𝑤 + ( 𝑘 ( ·𝑠 ‘ 𝑈 ) 𝑥 ) ) ) |
30 |
29
|
eqeq2d |
⊢ ( 𝑗 = 𝑘 → ( 𝑣 = ( 𝑤 + ( 𝑗 ( ·𝑠 ‘ 𝑈 ) 𝑥 ) ) ↔ 𝑣 = ( 𝑤 + ( 𝑘 ( ·𝑠 ‘ 𝑈 ) 𝑥 ) ) ) ) |
31 |
30
|
rexbidv |
⊢ ( 𝑗 = 𝑘 → ( ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑥 } ) 𝑣 = ( 𝑤 + ( 𝑗 ( ·𝑠 ‘ 𝑈 ) 𝑥 ) ) ↔ ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑥 } ) 𝑣 = ( 𝑤 + ( 𝑘 ( ·𝑠 ‘ 𝑈 ) 𝑥 ) ) ) ) |
32 |
31
|
cbvriotavw |
⊢ ( ℩ 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑥 } ) 𝑣 = ( 𝑤 + ( 𝑗 ( ·𝑠 ‘ 𝑈 ) 𝑥 ) ) ) = ( ℩ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑥 } ) 𝑣 = ( 𝑤 + ( 𝑘 ( ·𝑠 ‘ 𝑈 ) 𝑥 ) ) ) |
33 |
32
|
mpteq2i |
⊢ ( 𝑣 ∈ ( Base ‘ 𝑈 ) ↦ ( ℩ 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑥 } ) 𝑣 = ( 𝑤 + ( 𝑗 ( ·𝑠 ‘ 𝑈 ) 𝑥 ) ) ) ) = ( 𝑣 ∈ ( Base ‘ 𝑈 ) ↦ ( ℩ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑥 } ) 𝑣 = ( 𝑤 + ( 𝑘 ( ·𝑠 ‘ 𝑈 ) 𝑥 ) ) ) ) |
34 |
33
|
mpteq2i |
⊢ ( 𝑥 ∈ ( ( Base ‘ 𝑈 ) ∖ { 0 } ) ↦ ( 𝑣 ∈ ( Base ‘ 𝑈 ) ↦ ( ℩ 𝑗 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑥 } ) 𝑣 = ( 𝑤 + ( 𝑗 ( ·𝑠 ‘ 𝑈 ) 𝑥 ) ) ) ) ) = ( 𝑥 ∈ ( ( Base ‘ 𝑈 ) ∖ { 0 } ) ↦ ( 𝑣 ∈ ( Base ‘ 𝑈 ) ↦ ( ℩ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∃ 𝑤 ∈ ( ⊥ ‘ { 𝑥 } ) 𝑣 = ( 𝑤 + ( 𝑘 ( ·𝑠 ‘ 𝑈 ) 𝑥 ) ) ) ) ) |
35 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 34
|
lcfrlem38 |
⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ 𝐸 ) |