Metamath Proof Explorer


Theorem lcfrlem39

Description: Lemma for lcfr . Eliminate J . (Contributed by NM, 11-Mar-2015)

Ref Expression
Hypotheses lcfrlem38.h H=LHypK
lcfrlem38.o ˙=ocHKW
lcfrlem38.u U=DVecHKW
lcfrlem38.p +˙=+U
lcfrlem38.f F=LFnlU
lcfrlem38.l L=LKerU
lcfrlem38.d D=LDualU
lcfrlem38.q Q=LSubSpD
lcfrlem38.c C=fLFnlU|˙˙Lf=Lf
lcfrlem38.e E=gG˙Lg
lcfrlem38.k φKHLWH
lcfrlem38.g φGQ
lcfrlem38.gs φGC
lcfrlem38.xe φXE
lcfrlem38.ye φYE
lcfrlem38.z 0˙=0U
lcfrlem38.x φX0˙
lcfrlem38.y φY0˙
lcfrlem38.sp N=LSpanU
lcfrlem38.ne φNXNY
lcfrlem38.b B=NXY˙X+˙Y
lcfrlem38.i φIB
lcfrlem38.n φI0˙
Assertion lcfrlem39 φX+˙YE

Proof

Step Hyp Ref Expression
1 lcfrlem38.h H=LHypK
2 lcfrlem38.o ˙=ocHKW
3 lcfrlem38.u U=DVecHKW
4 lcfrlem38.p +˙=+U
5 lcfrlem38.f F=LFnlU
6 lcfrlem38.l L=LKerU
7 lcfrlem38.d D=LDualU
8 lcfrlem38.q Q=LSubSpD
9 lcfrlem38.c C=fLFnlU|˙˙Lf=Lf
10 lcfrlem38.e E=gG˙Lg
11 lcfrlem38.k φKHLWH
12 lcfrlem38.g φGQ
13 lcfrlem38.gs φGC
14 lcfrlem38.xe φXE
15 lcfrlem38.ye φYE
16 lcfrlem38.z 0˙=0U
17 lcfrlem38.x φX0˙
18 lcfrlem38.y φY0˙
19 lcfrlem38.sp N=LSpanU
20 lcfrlem38.ne φNXNY
21 lcfrlem38.b B=NXY˙X+˙Y
22 lcfrlem38.i φIB
23 lcfrlem38.n φI0˙
24 eqid BaseU=BaseU
25 eqid U=U
26 eqid ScalarU=ScalarU
27 eqid BaseScalarU=BaseScalarU
28 oveq1 j=kjUx=kUx
29 28 oveq2d j=kw+˙jUx=w+˙kUx
30 29 eqeq2d j=kv=w+˙jUxv=w+˙kUx
31 30 rexbidv j=kw˙xv=w+˙jUxw˙xv=w+˙kUx
32 31 cbvriotavw ιjBaseScalarU|w˙xv=w+˙jUx=ιkBaseScalarU|w˙xv=w+˙kUx
33 32 mpteq2i vBaseUιjBaseScalarU|w˙xv=w+˙jUx=vBaseUιkBaseScalarU|w˙xv=w+˙kUx
34 33 mpteq2i xBaseU0˙vBaseUιjBaseScalarU|w˙xv=w+˙jUx=xBaseU0˙vBaseUιkBaseScalarU|w˙xv=w+˙kUx
35 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 34 lcfrlem38 φX+˙YE